日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

          (1)寫出直線的普通方程以及曲線的極坐標(biāo)方程;

          (2)若直線與曲線的兩個(gè)交點(diǎn)分別為,直線軸的交點(diǎn)為,求的值.

          【答案】(1),;(2)1.

          【解析】分析:(1)消去參數(shù)t可得直線l的普通方程為xy-1=0.曲線C的直角坐標(biāo)方程為x2y2-4y=0.化為極坐標(biāo)即ρ=4sin θ

          (2)聯(lián)立直線參數(shù)方程與圓的一般方程可得t2-3t+1=0,結(jié)合直線參數(shù)的幾何意義可得|PM|·|PN|=|t1·t2|=1.

          詳解:(1)直線l的參數(shù)方程為(為參數(shù)),

          消去參數(shù)t,得xy-1=0.

          曲線C的參數(shù)方程為 (θ為參數(shù)),

          利用平方關(guān)系,得x2+(y-2)2=4,則x2y2-4y=0.

          ρ2x2y2,yρsin θ,代入得C的極坐標(biāo)方程為ρ=4sin θ

          (2)在直線xy-1=0中,令y=0,得點(diǎn)P(1,0).

          把直線l的參數(shù)方程代入圓C的方程得t2-3t+1=0,

          t1t2=3t1t2=1.

          由直線參數(shù)方程的幾何意義,|PM|·|PN|=|t1·t2|=1.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(1)為何值時(shí),.①有且僅有一個(gè)零點(diǎn);②有兩個(gè)零點(diǎn)且均比-1大;

          (2)若函數(shù)有4個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)上是增函數(shù),則的取值范圍是( 。

          A. B. C. D.

          【答案】C

          【解析】

          若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.

          若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

          則當(dāng)x∈[2,+∞)時(shí),

          x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

          ,f(2)=4+a>0

          解得﹣4<a≤4

          故選:C.

          【點(diǎn)睛】

          本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.

          型】單選題
          結(jié)束】
          10

          【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2015·新課標(biāo)1卷)已知橢圓E的中心為坐標(biāo)原點(diǎn),離心率為 , E的右焦點(diǎn)與拋物線C:y2=8x的焦點(diǎn)重合,A,B是C的準(zhǔn)線與E的兩個(gè)交點(diǎn),則|AB|= ( )
          A.3
          B.6
          C.9
          D.12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖為某旅游區(qū)各景點(diǎn)的分布圖,圖中一條帶箭頭的線段表示一段有方向的路,試計(jì)算順著箭頭方向,從A到H不同的旅游路線的條數(shù),這個(gè)數(shù)是(  )

          A. 15 B. 16 C. 17 D. 18

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某服裝店為慶祝開業(yè)三周年,舉行為期六天的促銷活動(dòng),規(guī)定消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開展,第五天該服裝店經(jīng)理對前五天中參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

          1

          2

          3

          4

          5

          4

          6

          10

          23

          22

          1)若具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

          2)預(yù)測第六天的參加抽獎(jiǎng)活動(dòng)的人數(shù)(按四舍五入取到整數(shù)).

          參考公式與參考數(shù)據(jù):.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市出租車的計(jì)價(jià)標(biāo)準(zhǔn)是:4km以內(nèi)(含4km10元,超過4km且不超過18km的部分1.2/km,超過18km的部分1.8/km,不計(jì)等待時(shí)間的費(fèi)用.

          1)如果某人乘車行駛了10km,他要付多少車費(fèi)?

          2)試建立車費(fèi)y(元)與行車?yán)锍?/span>xkm)的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】求過兩點(diǎn)A(1,4)、B(3,2),且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程.并判斷點(diǎn)M1(2,3),M2(2,4)與圓的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2017·全國卷Ⅲ文,18)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

          最高氣溫

          [10,15)

          [15,20)

          [20,25)

          [25,30)

          [30,35)

          [35,40)

          天數(shù)

          2

          16

          36

          25

          7

          4

          以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.

          (1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率;

          (2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.

          查看答案和解析>>

          同步練習(xí)冊答案