日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)若函數(shù)在定義域上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;

          2)討論的極值點(diǎn)的個(gè)數(shù);

          3)若有兩個(gè)極值點(diǎn),且,求的最小值.

          【答案】1;(2)當(dāng)時(shí),的極值點(diǎn)的個(gè)數(shù)為0;當(dāng)時(shí),的極值點(diǎn)的個(gè)數(shù)為2;(3

          【解析】

          1)求出導(dǎo)函數(shù),題意說(shuō)明上恒成立,可用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值(可用基本不等式求最值).

          2)由,對(duì)分類(lèi)討論,在(1)的基礎(chǔ)上,時(shí)無(wú)極值點(diǎn),在時(shí),求出的兩根,可列表得出的正負(fù),得的單調(diào)性,從而得極值點(diǎn).

          3)由(2)知,,求出,注意代換后可轉(zhuǎn)化為的代數(shù)式,令,首先有,變?yōu)?/span>的函數(shù),由求出的取值范圍后可得的取值范圍.

          解:(1)定義域?yàn)?/span>,由題意得

          因?yàn)楹瘮?shù)在定義域上是單調(diào)增函數(shù),所以上恒成立

          因?yàn)?/span>,所以,所以上恒成立

          因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí)取等號(hào),

          所以,即,所以,實(shí)數(shù)a的取值范圍為

          2,

          時(shí),由第(1)問(wèn)可知,函數(shù)在定義域上是單調(diào)增函數(shù);

          所以無(wú)極值點(diǎn),即的極值點(diǎn)的個(gè)數(shù)為0

          時(shí),令,得:,

          當(dāng)時(shí),,故

          列表:

          +

          0

          -

          0

          +

          極大值

          極小值

          當(dāng)時(shí),有極大值,當(dāng)時(shí),有極小值

          所以,的極值點(diǎn)的個(gè)數(shù)為2

          綜上所述,當(dāng)時(shí),的極值點(diǎn)的個(gè)數(shù)為0;當(dāng)時(shí),的極值點(diǎn)的個(gè)數(shù)為2

          3)由題意知,

          因?yàn)?/span>是函數(shù)的兩個(gè)極值點(diǎn),所以是方程的兩個(gè)不等實(shí)根

          所以,

          所以

          ,記

          可得:,所以,

          ,所以,所以,即,

          因?yàn)?/span>,解得:

          ,所以上單調(diào)減

          所以

          所以的最小值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在多面體ABCDEF中,四邊形ABCD是矩形,四邊形ABEF為等腰梯形,且,平面ABCD⊥平面ABEF

          (1)求證:BE⊥DF;

          (2)求三棱錐C﹣AEF的體積V.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)的部分圖象如圖所示,點(diǎn)A,B,C在圖象上,,,并且

          1)求的值及點(diǎn)B的坐標(biāo);

          2)若,且,求的值;

          3)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍,橫坐標(biāo)不變,再將所得圖象各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,最后將所得圖象向右平移個(gè)單位,得到的圖象,若關(guān)于x的方程在區(qū)間上有兩個(gè)不同解,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,底面為菱形的直四棱柱被過(guò)三點(diǎn)的平面截去一個(gè)三棱錐(圖一)得幾何體(圖二),E的中點(diǎn).

          (1)點(diǎn)F為棱上的動(dòng)點(diǎn),試問(wèn)平面與平面是否垂直?請(qǐng)說(shuō)明理由;

          (2)設(shè),當(dāng)點(diǎn)F中點(diǎn)時(shí),求銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司為了激勵(lì)業(yè)務(wù)員的積極性,對(duì)業(yè)績(jī)?cè)?/span>60萬(wàn)到200萬(wàn)的業(yè)務(wù)員進(jìn)行獎(jiǎng)勵(lì)獎(jiǎng)勵(lì)方案遵循以下原則:獎(jiǎng)金y(單位:萬(wàn)元)隨著業(yè)績(jī)值x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不低于1.5萬(wàn)元同時(shí)獎(jiǎng)金不超過(guò)業(yè)績(jī)值的5%.

          1)若某業(yè)務(wù)員的業(yè)績(jī)?yōu)?/span>100萬(wàn)核定可得4萬(wàn)元獎(jiǎng)金,若該公司用函數(shù)k為常數(shù))作為獎(jiǎng)勵(lì)函數(shù)模型,則業(yè)績(jī)200萬(wàn)元的業(yè)務(wù)員可以得到多少獎(jiǎng)勵(lì)?(已知,

          2)若采用函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型試確定最小的正整數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:

          則下面結(jié)論中不正確的是

          A. 新農(nóng)村建設(shè)后,種植收入減少

          B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

          C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

          D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時(shí),求曲線在點(diǎn)處的切線的斜率;

          (2)討論函數(shù)的單調(diào)性;

          (3)當(dāng)函數(shù)有極值時(shí),若對(duì), 恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫局于2004年5月31日發(fā)布了新的《車(chē)輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗(yàn)》國(guó)家標(biāo)準(zhǔn),新標(biāo)準(zhǔn)規(guī)定,車(chē)輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車(chē),血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車(chē),經(jīng)過(guò)反復(fù)試驗(yàn),喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如下:

          該函數(shù)模型如下:

          根據(jù)上述條件,回答以下問(wèn)題:

          (1)試計(jì)算喝1瓶啤酒后多少小時(shí)血液中的酒精含量達(dá)到最大值?最大值是多少?

          (2)試計(jì)算喝1瓶啤酒后多少小時(shí)后才可以駕車(chē)?(時(shí)間以整小時(shí)計(jì)算)

          (參數(shù)數(shù)據(jù): ,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】隨著我國(guó)中醫(yī)學(xué)的發(fā)展,藥用昆蟲(chóng)的使用相應(yīng)愈來(lái)愈多.每年春暖以后至寒冬前,是昆蟲(chóng)大量活動(dòng)與繁殖季節(jié),易于采集各種藥用昆蟲(chóng).已知一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)與一定范圍內(nèi)的溫度有關(guān),于是科研人員在3月份的31天中隨機(jī)挑選了5天進(jìn)行研究,現(xiàn)收集了該種藥用昆蟲(chóng)的5組觀測(cè)數(shù)據(jù)如下表:

          日期

          2

          7

          15

          22

          30

          溫度

          10

          11

          13

          12

          8

          產(chǎn)卵數(shù)/個(gè)

          23

          25

          30

          26

          16

          (1)從這5天中任選2天,記這兩天藥用昆蟲(chóng)的產(chǎn)卵分別為,,求事件,均不小于25”的概率;

          (2)科研人員確定的研究方案是:先從這五組數(shù)據(jù)中任選2組,用剩下的3組數(shù)據(jù)建立關(guān)于的線性回歸方程再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          (。┤暨x取的是32日與30日的兩組數(shù)據(jù),請(qǐng)根據(jù)37日、15日和22日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程

          (ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2個(gè),則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(ⅰ)中所得的線性回歸方程是否可靠?

          附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案