【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)為曲線
上位于第一,二象限的兩個動點,且
,射線
交曲線
分別于
,求
面積的最小值,并求此時四邊形
的面積.
【答案】(1);
(2)
面積的最小值為
;四邊形的面積為
【解析】
(1)將曲線消去參數(shù)即可得到
的普通方程,將
,
代入曲線
的極坐標(biāo)方程即可;
(2)由(1)得曲線的極坐標(biāo)方程,設(shè)
,
,
,
利用方程可得,再利用基本不等式得
,即可得
,根據(jù)題意知
,進而可得四邊形
的面積.
(1)由曲線的參數(shù)方程為
(
為參數(shù))消去參數(shù)得
曲線的極坐標(biāo)方程為
,即
,
所以,曲線的直角坐標(biāo)方程
.
(2)依題意得的極坐標(biāo)方程為
設(shè),
,
,
則,
,故
,當(dāng)且僅當(dāng)
(即
)時取“=”,
故,即
面積的最小值為
.
此時,
故所求四邊形的面積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)當(dāng)時,設(shè)函數(shù)
在區(qū)間
上的最小值為
,求
;
(2)設(shè),若函數(shù)
有兩個極值點
,且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知點為拋物線
的焦點,點
在拋物線
上,且
.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知點,延長
交拋物線
于點
,證明:以點
為圓心且與直線
相切的圓,必與直線
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:
根據(jù)該折線圖可知,下列說法錯誤的是( )
A. 該超市2018年的12個月中的7月份的收益最高
B. 該超市2018年的12個月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰梯形中(如圖1),
,
,
為線段
的中點,
、
為線段
上的點,
,現(xiàn)將四邊形
沿
折起(如圖2)
(1)求證:平面
;
(2)在圖2中,若,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角
所對的邊分別為
,_________,且
.現(xiàn)從:①
,②
,③
這三個條件中任選一個,補充在以上問題中,并判斷這樣的
是否存在,若存在,求
的面積
_________;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,
、
分別是橢圓
長軸的左、右端點,
為橢圓上的動點.
(1)求的最大值,并證明你的結(jié)論;
(2)設(shè)直線的斜率為
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和曲線
的直角坐標(biāo)方程;
(2)若點在曲線
上,點
在曲線
上,求
的最小值及此時點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,
,
分別為棱
和棱
的中點,則下列說法正確的是( )
A.∥平面
B.平面
截正方體所得截面為等腰梯形
C.平面
D.異面直線
與
所成的角為60°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com