【題目】已知拋物線的焦點到直線
的距離為
,過點
的直線
與
交于
、
兩點.
(1)求拋物線的準(zhǔn)線方程;
(2)設(shè)直線的斜率為
,直線
的斜率為
,若
,且
與
的交點在拋物線
上,求直線
的斜率和點
的坐標(biāo).
【答案】(1)(2)直線
的斜率為
,點
的坐標(biāo)為
.
【解析】
(1)利用點到直線的距離公式,即可求得,則拋物線方程和準(zhǔn)線方程得解;
(2)聯(lián)立直線與拋物線方程,即可求得
經(jīng)過的一點,設(shè)出直線
的方程,聯(lián)立拋物線方程,利用韋達定理,結(jié)合
,即可容易求得斜率以及點
的坐標(biāo).
(1)因為拋物線的焦點為
,
直線的一般方程為
,
所以,解得
.
拋物線的準(zhǔn)線方程為
.
(2)聯(lián)立,解得
.
設(shè)直線的方程為
,將它代入
,得
.
設(shè),
則
,
,
所以,
解得,又直線
過點
,所以
,解得
,
所以直線的方程
,也即
,
所以直線的斜率為
,點
的坐標(biāo)為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù),
),在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的單位長度,以坐標(biāo)原點
為極點,
軸正半軸為極軸)中,曲線
的極坐標(biāo)方程為
.
(1)若可,試判斷曲線
和
的位置關(guān)系;
(2)若曲線與
交于點
,
兩點,且
,滿足
.求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為
,與坐標(biāo)軸分別交于A,B兩點,且經(jīng)過點Q(
,1).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若P(m,n)為橢圓C外一動點,過點P作橢圓C的兩條互相垂直的切線l1、l2,求動點P的軌跡方程,并求△ABP面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,BC//A
,
為正三角形,M為PD中點.
(1)證明:CM//平面PAB;
(2)若二面角P-AB-C的余弦值為,求直線AD與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為
,右頂點到左焦點的距離為
,
、
分別為橢圓
的左、右兩個焦點.
(1)求橢圓的方程;
(2)已知橢圓的切線
(與橢圓
有唯一交點)的方程為
,切線
與直線
和直線
分別交于點
、
,求證:
為定值,并求此定值;
(3)設(shè)矩形的四條邊所在直線都和橢圓
相切(即每條邊所在直線與橢圓
有唯一交點),求矩形
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位科技活動紀(jì)念章的結(jié)構(gòu)如圖所示,O是半徑分別為1cm,2cm的兩個同心圓的圓心,等腰△ABC的頂點A在外圓上,底邊BC的兩個端點都在內(nèi)圓上,點O,A在直線BC的同側(cè).若線段BC與劣弧所圍成的弓形面積為S1,△OAB與△OAC的面積之和為S2, 設(shè)∠BOC=2
.
(1)當(dāng)時,求S2﹣S1的值;
(2)經(jīng)研究發(fā)現(xiàn)當(dāng)S2﹣S1的值最大時,紀(jì)念章最美觀,求當(dāng)紀(jì)念章最美觀時,cos的值.(求導(dǎo)參考公式:(sin2x)'=2cos2x,(cos2x)'=﹣2sin2x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為
,且過點
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與拋物線
相交于
兩點,與橢圓
相交于
兩點,
(
為坐標(biāo)原點),
為拋物線的焦點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)的收集和整理在當(dāng)今社會起到了舉足輕重的作用,它用統(tǒng)計的方法來幫助人們分析以往的行為習(xí)慣,進而指導(dǎo)人們接下來的行動.
某支足球隊的主教練打算從預(yù)備球員甲、乙兩人中選一人為正式球員,他收集到了甲、乙兩名球員近期5場比賽的傳球成功次數(shù),如下表:
場次 | 第一場 | 第二場 | 第三場 | 第四場 | 第五場 |
甲 | 28 | 33 | 36 | 38 | 45 |
乙 | 39 | 31 | 43 | 39 | 33 |
(1)根據(jù)這兩名球員近期5場比賽的傳球成功次數(shù),完成莖葉圖(莖表示十位,葉表示個位);分別在平面直角坐標(biāo)系中畫出兩名球員的傳球成功次數(shù)的散點圖;
(2)求出甲、乙兩名球員近期5場比賽的傳球成功次數(shù)的平均值和方差;
(3)主教練根據(jù)球員每場比賽的傳球成功次數(shù)分析出球員在場上的積極程度和技術(shù)水平,同時根據(jù)多場比賽的數(shù)據(jù)也可以分析出球員的狀態(tài)和潛力.你認(rèn)為主教練應(yīng)選哪位球員?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若不等式對任意的
恒成立,求
的取值范圍;
(2)當(dāng)時,記
的最小值為
,正實數(shù)
,
,
滿足
,證明:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com