日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 斜三棱柱ABC-A1B1C1,已知側(cè)面BB1C1C與底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A-B1B-C為30°
          (1)求AB1與平面BB1C1C所成角的正切值;
          (2)在平面AA1B1B內(nèi)找一點P,使三棱錐P-BB1C為正三棱錐,并求P到平面BB1C距離.
          分析:(1)由側(cè)面BB1C1C與底面ABC垂直且∠BCA=90°知AC⊥平面BB1C1C,則有∠AB1C為AB1與平面BB1C1C所成的角,連接B1C,則∠AB1C為AB1與平面BB1C1C所成的角,在Rt△ACB1中可求得tan∠∠AB1C.
          (2)在AD上取點P,使AP=2PD,則P點為所求,在CD上取點O,使CO=2OD,連PO,則易知三棱錐P-BB1C為正三棱錐,故可求.
          解答:解:(1)由側(cè)面BB1C1C與底面ABC垂直且∠BCA=90°知AC⊥平面BB1C1C
          取BB1的中點D,AC⊥平面BB1C1C
          ∴AC⊥BB1
          ∴BB1⊥平面ADC
          ∴AD⊥BB1
          ∴∠CDA為二面角A-BB1-C的平面角,∴∠CDA=30°,
          ∵CD=
          3
          ,∴AC=1
          連接B1C,則∠AB1C為AB1與平面BB1C1C所成的角,
          在Rt△ACB1中tan∠AB1C=
          AC
          B1C
          =
          1
          2
          ,
          (2)在AD上取點P,使AP=2PD,則P點為所求,
          在CD上取點O,使CO=2OD,連PO,,
          則PO∥AC,且PO=
          1
          3
          AC
          ,
          ∵AO⊥平面BB1C,
          ∴PO⊥平面BB1C 且 BB1C為等邊三角形,
          ∴三棱錐P-BB1C為正三棱錐,
          且P到平面BB1C的距離為PO,PO=
          1
          3
          AC=
          1
          3
          點評:本題以斜三棱柱為載體,考查線面角,考查點面距離,屬于基礎(chǔ)題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點D,又知BA1⊥AC1
          (Ⅰ)求證:AC1⊥平面A1BC;
          (Ⅱ)求CC1到平面A1AB的距離;
          (Ⅲ)求二面角A-A1B-C的大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,斜三棱柱ABC-A1B1C1的側(cè)面AA1C1C是面積為
          3
          2
          的菱形,∠ACC1為銳角,側(cè)面ABB1A1⊥側(cè)面AA1C1C,且A1B=AB=AC=1.
          (Ⅰ)求證:AA1⊥BC1;
          (Ⅱ)求三棱錐A1-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點D,且BA1⊥AC1
          (1)求證:AC1⊥平面A1BC;
          (2)求多面體B1C1ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2010•撫州模擬)在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又頂點A1在底面ABC上的射影落在AC上,側(cè)棱AA1與底面ABC成60°角,D為AC的中點.
          (1)求證:BD⊥AA1;
          (2)如果二面角A1-BD-C1為直二面角,試求側(cè)棱CC1與側(cè)面A1ABB1的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點D,E為AB的中點,BA1⊥AC1
          (Ⅰ)求證:AC1⊥平面A1BC;
          (Ⅱ)求二面角B-A1E-C余弦值的大。

          查看答案和解析>>

          同步練習冊答案