日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知直線和直線,射線的一個(gè)法向量為,點(diǎn)為坐標(biāo)原點(diǎn),,,點(diǎn)、分別是直線、上的動(dòng)點(diǎn),直線之間的距離為2,于點(diǎn),于點(diǎn);

          1)若,求的值;

          2)若,求的最大值;

          3)若,求的最小值.

          【答案】1;(2;(3.

          【解析】

          1)先由得到射線的方程為:,根據(jù)點(diǎn)到直線距離公式求出,,由勾股定理求出,,進(jìn)而可求出結(jié)果;

          2)根據(jù)題意,得到,設(shè)、,得到,,由,結(jié)合柯西不等式得到,進(jìn)而可求出結(jié)果;

          3)先由題意,作出點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),得到,設(shè)

          得到,進(jìn)而可求出結(jié)果.

          1)因?yàn)?/span>,所以,所以射線的方程為:;

          所以,,所以;

          又直線,所以,所以,

          因此;

          2)因?yàn)?/span>,直線之間的距離為2,所以,即;

          設(shè)、,因?yàn)?/span>,

          ,

          所以,

          ,所以,

          因?yàn)?/span>

          所以,

          的最大值為;

          3)因?yàn)?/span>,所以,,如圖所示:

          作出點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),則,

          設(shè),

          所以,

          同理,可由對(duì)稱性得:當(dāng)且僅當(dāng)時(shí),取得最小值

          因此的最小值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司的新能源產(chǎn)品上市后在國內(nèi)外同時(shí)銷售,已知第一批產(chǎn)品上市銷售40天內(nèi)全部售完,該公司對(duì)這批產(chǎn)品上市后的國內(nèi)外市場(chǎng)銷售情況進(jìn)行了跟蹤調(diào)查,如圖所示,其中圖①中的折線表示的是國外市場(chǎng)的日銷售量與上市時(shí)間的關(guān)系;圖②中的拋物線表示的是國內(nèi)市場(chǎng)的日銷售量與上市時(shí)間的關(guān)系;下表表示的是產(chǎn)品廣告費(fèi)用、產(chǎn)品成本、產(chǎn)品銷售價(jià)格與上市時(shí)間的關(guān)系.

          (1)分別寫出國外市場(chǎng)的日銷售量、國內(nèi)市場(chǎng)的日銷售量與產(chǎn)品上市時(shí)間的函數(shù)關(guān)系式;

          (2)產(chǎn)品上市后的哪幾天,這家公司的日銷售利潤超過260萬元?

          (日銷售利潤=(單件產(chǎn)品銷售價(jià)-單件產(chǎn)品成本)×日銷售量-當(dāng)天廣告費(fèi)用,)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)在雙曲線,)上,且雙曲線的一條漸近線的方程是

          (1)求雙曲線的方程;

          (2)若過點(diǎn)且斜率為的直線與雙曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍;

          (3)設(shè)(2)中直線與雙曲線交于兩個(gè)不同的點(diǎn),若以線段為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為平面上的兩個(gè)定點(diǎn),且,該平面上的動(dòng)線段的端點(diǎn)、,滿足,,則動(dòng)線段所形成圖形的面積為(

          A.36B.60C.72D.108

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校興趣小組在如圖所示的矩形區(qū)域內(nèi)舉行機(jī)器人攔截挑戰(zhàn)賽,在處按方向釋放機(jī)器人甲,同時(shí)在處按某方向釋放機(jī)器人乙,設(shè)機(jī)器人乙在處成功攔截機(jī)器人甲,若點(diǎn)在矩形區(qū)城內(nèi)(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失敗,已知米,中點(diǎn),機(jī)器人乙的速度是機(jī)器人甲的速度的2倍,比賽中兩機(jī)器人均按勻速直線遠(yuǎn)動(dòng)方式行進(jìn).

          1)如圖建系,求的軌跡方程;

          2)記的夾角為,,如何設(shè)計(jì)的長度,才能確保無論的值為多少,總可以通過設(shè)置機(jī)器人乙的釋放角度使之挑戰(zhàn)成功?

          3)若的夾角為,足夠長,則如何設(shè)置機(jī)器人乙的釋放角度,才能挑戰(zhàn)成功?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ex﹣axlnx.

          (1)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;

          (2)證明:對(duì)于a∈(0,e),函數(shù)f(x)在區(qū)間()上單調(diào)遞增.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是一個(gè)菱形,三角形PAD是一個(gè)等腰三角形,∠BAD=∠PAD=,點(diǎn)E在線段PC上,且PE=3EC.

          (1)求證:AD⊥PB;

          (2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示為一正方體的平面展開圖,在這個(gè)正方體中,有下列四個(gè)命題:

          AFGC;

          BDGC成異面直線且夾角為60

          BDMN;

          BG與平面ABCD所成的角為45.

          其中正確的個(gè)數(shù)是( )

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,角A,B,C所對(duì)的邊分別為ab,c,且abc=8.

          (1)若a=2,b,求cosC的值;

          (2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面積SsinC,求ab的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案