日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)點(diǎn)為圓上的動(dòng)點(diǎn),過點(diǎn)軸的垂線,垂足為,動(dòng)點(diǎn)滿足,記點(diǎn)的軌跡為

          1)求曲線的方程;

          2)已知點(diǎn),斜率為的直線與曲線交于不同的兩點(diǎn),且滿足,試求的取值范圍.

          【答案】(1);(2.

          【解析】

          1)設(shè)點(diǎn),,則,根據(jù)可得再由點(diǎn)在圓上,將代入化簡(jiǎn)即可.

          2)當(dāng)時(shí),顯然滿足題意,當(dāng)時(shí),設(shè),與橢圓聯(lián)立方程組可得,由題意,即,①設(shè),,得到的中點(diǎn)的坐標(biāo),根據(jù),則有,即,可得,②,將②代入①求解即可.

          1)設(shè)點(diǎn),,則,

          ,,

          可得

          因?yàn)辄c(diǎn)在圓上,所以

          所以,

          即曲線的方程為

          2)當(dāng)時(shí),顯然滿足題意,當(dāng)時(shí),設(shè)

          聯(lián)立方程組可得,即

          由題意,即,①

          設(shè),

          由根與系數(shù)的關(guān)系可得:,,

          的中點(diǎn),

          又因?yàn)?/span>,所以,

          所以,即,

          化簡(jiǎn)可得,②

          將②代入①可得,化簡(jiǎn)可得

          解得,綜上可得的取值范圍是

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某單位為了更好地應(yīng)對(duì)新型冠狀病毒肺炎疫情,對(duì)單位的職工進(jìn)行防疫知識(shí)培訓(xùn),所有職工選擇網(wǎng)絡(luò)在線培訓(xùn)和線下培訓(xùn)中的一種方案進(jìn)行培訓(xùn).隨機(jī)抽取了140人的培訓(xùn)成績(jī),統(tǒng)計(jì)發(fā)現(xiàn)樣本中40個(gè)成績(jī)來(lái)自線下培訓(xùn)職工,其余來(lái)自在線培訓(xùn)的職工,并得到如下統(tǒng)計(jì)圖表:

          1)寫出線下培訓(xùn)莖葉圖中成績(jī)的中位數(shù),估算在線培訓(xùn)直方圖的中位數(shù)(保留一位小數(shù));

          2)得分90分及以上為成績(jī)優(yōu)秀,完成下邊列聯(lián)表,并判斷是否有的把握認(rèn)為成績(jī)優(yōu)秀與培訓(xùn)方式有關(guān)?

          優(yōu)秀

          非優(yōu)秀

          合計(jì)

          線下培訓(xùn)

          在線培訓(xùn)

          合計(jì)

          附:

          0.050

          0.010

          0.001

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】橢圓的右焦點(diǎn),過點(diǎn)且與軸垂直的直線被橢圓截得的弦長(zhǎng)為

          1)求橢圓的方程;

          2)過點(diǎn)的直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),若,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓 經(jīng)過橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓, 兩點(diǎn),且).

          (1)求橢圓的方程;

          (2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

          (1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;

          (2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,已知四邊形是菱形,平面平面,,.

          1)求證:平面平面.

          2)若,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線的焦點(diǎn)為橢圓的右焦點(diǎn),C的準(zhǔn)線與E交于P,Q兩點(diǎn),且

          1)求E的方程;

          2)過E的左頂點(diǎn)A作直線lE于另一點(diǎn)B,且BOO為坐標(biāo)原點(diǎn))的延長(zhǎng)線交E于點(diǎn)M,若直線AM的斜率為1,求l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過全國(guó)人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙兩個(gè)地區(qū)采取防護(hù)措施后,統(tǒng)計(jì)了從27日到213日一周的新增“新冠肺炎”確診人數(shù),繪制成如圖折線圖:

          1)根據(jù)圖中甲、乙兩個(gè)地區(qū)折線圖的信息,寫出你認(rèn)為最重要的兩個(gè)統(tǒng)計(jì)結(jié)論;

          2)新冠病毒在進(jìn)入人體后有一段時(shí)間的潛伏期,此期間為病毒傳播的最佳時(shí)期,我們把與病毒感染者有過密切接觸的人群稱為密切接觸者,假設(shè)每位密切接觸者不再接觸其他病毒感染者,10天內(nèi)所有人不知情且生活照常.

          i)在不加任何防護(hù)措施的前提下,假設(shè)每位密切接觸者被感染的概率均為.第一天,若某位感染者產(chǎn)生名密切接觸者則第二天新增感染者平均人數(shù)為ap;第二天,若每位感染者都產(chǎn)生a名密切接觸者,則第三天新增感染者平均人數(shù)為;以此類推,記由一名感染者引發(fā)的病毒傳播的第n天新增感染者平均人數(shù)為.寫出;

          ii)在(i)的條件下,若所有人都配戴口罩后,假設(shè)每位密切接觸者被感染的概率均為,且滿足關(guān)系,此時(shí),記由一名感染者引發(fā)的病毒傳播的第n天新增感染者平均人數(shù)為.當(dāng)最大,且時(shí),根據(jù)的值說明戴口罩的必要性.(精確到

          參考公式:函數(shù)的導(dǎo)函數(shù);

          參考數(shù)據(jù):,,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,(其中)是上的一點(diǎn),且.

          (1)求拋物線的方程;

          (2)已知為拋物線上除頂點(diǎn)之外的任意一點(diǎn),在點(diǎn)處的切線與軸交于點(diǎn),過點(diǎn)的直線交拋物線于,兩點(diǎn),設(shè),的斜率分別為,,,求證:,成等比數(shù)列.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案