【題目】已知函數(shù).
(1)當時,求函數(shù)
的最小值;
(2)若函數(shù)的最小值為
,令
,求
的取值范圍.
【答案】(1);(2)
.
【解析】
試題分析:(1)當時,易求得
的解析式,為分段函數(shù),由解析式易得當
時,
;(2)根據(jù)題意可求得
的解析式,也是一分段函數(shù),從而可求得其最小值為
,根據(jù)題意,即可求得
的取值范圍.
試題解析: (1).................2分
由.................3分
由.................4分
所以;.................5分
(2) .................6分
當.................7分
當.................8分
當.................9分
所以..................10分
又,所以當
時
;當
時
;當
時
;
從而得.................12分
科目:高中數(shù)學 來源: 題型:
【題目】求適合下列條件的直線方程:
(1)經(jīng)過點P(3,2)且在兩坐標軸上的截距相等;
(2)經(jīng)過點A(-1,-3),傾斜角等于直線y=3x的傾斜角的2倍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱中,
,
,
是
的中點,
是等腰三角形,
為
的中點,
為
上一點.
(I)若平面
,求
;
(II)平面將三棱柱
分成兩個部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知焦點在軸的橢圓的離心率與雙曲線
的離心率互為倒數(shù),且過點
.
(1)求橢圓方程;
(2)若直線與橢圓交于不同的兩點
,點
,有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某服裝廠每天的固定成本是30000元,每天最大規(guī)模的生產(chǎn)量是件.每生產(chǎn)一件服裝,成本增加100元,生產(chǎn)
件服裝的收入函數(shù)是
,記
,
分別為每天生產(chǎn)
件服裝的利潤和平均利潤(
).
(1)當時,每天生產(chǎn)量
為多少時,利潤
有最大值;
(2)每天生產(chǎn)量為多少時,平均利潤
有最大值,并求
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com