日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為F1 , F2 , 線段OF1 , OF2的中點分別為B1 , B2 , 且△AB1B2是面積為4的直角三角形.

          (1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
          (2)過B1做直線l交橢圓于P,Q兩點,使PB2⊥QB2 , 求直線l的方程.

          【答案】
          (1)解:設(shè)橢圓的方程為 ,F(xiàn)2(c,0)

          ∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2為直角,從而|OA|=|OB2|,即

          ∵c2=a2﹣b2,∴a2=5b2,c2=4b2,∴

          在△AB1B2中,OA⊥B1B2,∴S= |B1B2||OA|=

          ∵S=4,∴b2=4,∴a2=5b2=20

          ∴橢圓標(biāo)準(zhǔn)方程為 ;


          (2)解:由(1)知B1(﹣2,0),B2(2,0),由題意,直線PQ的傾斜角不為0,故可設(shè)直線PQ的方程為x=my﹣2

          代入橢圓方程,消元可得(m2+5)y2﹣4my﹣16=0①

          設(shè)P(x1,y1),Q(x2,y2),

          ,

          =

          ∵PB2⊥QB2,∴

          ,∴m=±2

          所以滿足條件的直線有兩條,其方程分別為x+2y+2=0和x﹣2y+2=0.


          【解析】(1)設(shè)橢圓的方程為 ,F(xiàn)2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2為直角,從而 ,利用c2=a2﹣b2 , 可求 ,又S= |B1B2||OA|= =4,故可求橢圓標(biāo)準(zhǔn)方程;(2)由(1)知B1(﹣2,0),B2(2,0),由題意,直線PQ的傾斜角不為0,故可設(shè)直線PQ的方程為x=my﹣2,代入橢圓方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韋達定理及PB2⊥QB2 , 利用 可求m的值,進而可求直線l的方程.
          【考點精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識,掌握橢圓標(biāo)準(zhǔn)方程焦點在x軸:,焦點在y軸:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

          (1)求證:AA1⊥平面ABC;
          (2)求證二面角A1﹣BC1﹣B1的余弦值;
          (3)證明:在線段BC1上存在點D,使得AD⊥A1B,并求 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)fn(x)=﹣1+x+ + +…+ (x∈R,n∈N+),證明:
          (1)對每個n∈N+ , 存在唯一的x∈[ ,1],滿足fn(xn)=0;
          (2)對于任意p∈N+ , 由(1)中xn構(gòu)成數(shù)列{xn}滿足0<xn﹣xn+p

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩人輪流投籃,每人每次投一球.約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結(jié)束.設(shè)甲每次投籃投中的概率為 ,乙每次投籃投中的概率為 ,且各次投籃互不影響.
          (1)求甲獲勝的概率;
          (2)求投籃結(jié)束時甲的投籃次數(shù)ξ的分布列與期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.

          (1)求數(shù)列{an}的通項公式;

          (2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】把函數(shù)y=cos2x+1的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),然后向左平移1個單位長度,再向下平移1個單位長度,得到的圖象是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如下:

          (Ⅰ)估計該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;

          (Ⅱ)能否有99℅的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

          (Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查辦法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由。

          是否需要志愿者

          性別

          需要

          40

          30

          不需要

          160

          270

          參考數(shù)據(jù):

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)有小學(xué)150所,中學(xué)75所,大學(xué)25所.先采用分層抽樣的方法從這些學(xué)校中抽取30所學(xué)校對學(xué)生進行視力調(diào)查,應(yīng)從小學(xué)中抽取 18 所學(xué)校,中學(xué)中抽取所學(xué)校.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,

          ,

          (I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;

          〔II〕年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?

          查看答案和解析>>

          同步練習(xí)冊答案