日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面底面ABCD,已知, 為正三角形.

          1)證明

          2)若,求二面角的大小的余弦值.

          【答案】1)證明見解析.(2)二面角的余弦值為

          【解析】

          1)作于點(diǎn),連接,根據(jù)面面垂直性質(zhì)可得底面ABCD,由三角形全等性質(zhì)可得,進(jìn)而根據(jù)線面垂直判定定理證明平面,即可證明.

          2)根據(jù)所給角度和線段關(guān)系,可證明以均為等邊三角形,從而取中點(diǎn),連接,即可由線段長(zhǎng)結(jié)合余弦定理求得二面角的大小.

          1)證明:作于點(diǎn),連接,如下圖所示:

          因?yàn)閭?cè)面底面ABCD,

          底面ABCD

          因?yàn)?/span> 為正三角形,則,

          所以,即,

          又因?yàn)?/span>,

          所以,而,

          所以平面,

          所以.

          2)由(1)可知,,

          所以,

          又因?yàn)?/span>,所以,即中點(diǎn).

          由等腰三角形三線合一可知

          中,由等腰三角形三線合一可得,

          所以均為邊長(zhǎng)為2的等邊三角形,

          中點(diǎn),連接,如下圖所示:

          由題意可知,即為二面角的平面角,

          所以在中由余弦定理可得

          ,

          即二面角的余弦值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)有兩個(gè)不同的零點(diǎn),

          1)求實(shí)數(shù)a的取值范圍;

          2)證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若二次函數(shù)f(x)=4x2-2(t-2)x-2t2-t+1在區(qū)間[-1,1]內(nèi)至少存在一個(gè)值m,使得f(m)>0,則實(shí)數(shù)t的取值范圍( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了人進(jìn)行分析,得到如下列聯(lián)表(單位:人).

          經(jīng)常使用

          偶爾使用或不使用

          合計(jì)

          歲及以下

          歲以上

          合計(jì)

          1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為市使用共享單車的情況與年齡有關(guān);

          2)(i)現(xiàn)從所選取的歲以上的網(wǎng)友中,采用分層抽樣的方法選取人,再?gòu)倪@人中隨機(jī)選出人贈(zèng)送優(yōu)惠券,求選出的人中至少有人經(jīng)常使用共享單車的概率;

          ii)將頻率視為概率,從市所有參與調(diào)查的網(wǎng)友中隨機(jī)選取人贈(zèng)送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學(xué)期望和方差.

          參考公式:,其中.

          參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè),,,數(shù)列的前項(xiàng)和,點(diǎn))均在函數(shù)的圖像上.

          (1)求數(shù)列的通項(xiàng)公式;

          (2)設(shè),是數(shù)列的前項(xiàng)和,求滿足)的最大正整數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長(zhǎng)度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

          (1)求直線的普通方程與曲線的直角坐標(biāo)方程;

          (2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了積極支持雄安新區(qū)建設(shè),某投資公司計(jì)劃明年投資1000萬(wàn)元給雄安新區(qū)甲、乙兩家科技企業(yè),以支持其創(chuàng)新研發(fā)計(jì)劃,經(jīng)有關(guān)部門測(cè)算,若不受中美貿(mào)易戰(zhàn)影響的話,每投入100萬(wàn)元資金,在甲企業(yè)可獲利150萬(wàn)元,若遭受貿(mào)易戰(zhàn)影響的話,則將損失50萬(wàn)元;同樣的情況,在乙企業(yè)可獲利100萬(wàn)元,否則將損失20萬(wàn)元,假設(shè)甲、乙兩企業(yè)遭受貿(mào)易戰(zhàn)影響的概率分別為0.6和0.5.

          (1)若在甲、乙兩企業(yè)分別投資500萬(wàn)元,求獲利1250萬(wàn)元的概率;

          (2)若在兩企業(yè)的投資額相差不超過(guò)300萬(wàn)元,求該投資公司明年獲利約在什么范圍內(nèi)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè),橢圓與雙曲線的焦點(diǎn)相同.

          (1)求橢圓與雙曲線的方程;

          (2)過(guò)雙曲線的右頂點(diǎn)作兩條斜率分別為,的直線,,分別交雙曲線于點(diǎn),不同于右頂點(diǎn)),若,求證:直線的傾斜角為定值,并求出此定值;

          (3)設(shè)點(diǎn),若對(duì)于直線,橢圓上總存在不同的兩點(diǎn)關(guān)于直線對(duì)稱,且,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),

          (1)證明:,直線都不是曲線的切線;

          (2)若,使成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案