日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的離心率為,其中左焦點(-2,0).
          (1) 求橢圓C的方程;
          (2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.

          (1).(2).

          解析

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          (本小題滿分13分)
          已知點,△的周長為6.
          (Ⅰ)求動點的軌跡的方程;
          (Ⅱ)設(shè)過點的直線與曲線相交于不同的兩點,.若點軸上,且,求點的縱坐標的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓的頂點與雙曲線的焦點重合,它們的離心率之和為,若橢圓的焦點在軸上,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本小題滿分12分)已知點F是拋物線C:的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=

          (Ⅰ)求點S的坐標;
          (Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
          ①判斷直線MN的斜率是否為定值,并說明理由;
          ②延長NM交軸于點E,若|EM|=|NE|,求cos∠MSN的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓的兩個焦點分別為,離心率。
          (1)求橢圓方程;
          (2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為–,求直線l傾斜角的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知雙曲線的中心在原點,對稱軸為坐標軸,一條漸近線方程為,右焦點,雙曲線的實軸為為雙曲線上一點(不同于),直線,分別與直線交于兩點
          (1)求雙曲線的方程;
          (2)是否為定值,若為定值,求出該值;若不為定值,說明理由。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
          (文)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標原點), 過點作一斜率為的直線交橢圓于、兩點(其中點在軸上方,點在軸下方) .

          (1)求橢圓的方程;
          (2)若,求的面積;
          (3)設(shè)點為點關(guān)于軸的對稱點,判斷的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本小題滿分12分)已知雙曲線的兩個焦點為、在雙曲線C上.
          (1)求雙曲線C的方程;
          (2)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本小題滿分12分)
          已知直線經(jīng)過拋物線的焦點,且與拋物線交于兩點,點為坐標原點.

          (Ⅰ)證明:為鈍角.
          (Ⅱ)若的面積為,求直線的方程;

          查看答案和解析>>

          同步練習冊答案