日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)
          已知直線經(jīng)過拋物線的焦點(diǎn),且與拋物線交于兩點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn).

          (Ⅰ)證明:為鈍角.
          (Ⅱ)若的面積為,求直線的方程;

          (I)見解析;(Ⅱ)直線方程為

          解析試題分析:(I)依題意設(shè)直線的方程為:必存在)
          ,設(shè)直線與拋物線的交點(diǎn)坐標(biāo)為,則有,依向量的數(shù)量積定義,即證為鈍角
          (Ⅱ) 由(I)可知: ,,
          ,直線方程為
          考點(diǎn):本題主要考查直線與拋物線的位置關(guān)系;弦長公式。
          點(diǎn)評:利用一元二次方程根與系數(shù)的關(guān)系,結(jié)合數(shù)量積的坐標(biāo)運(yùn)算,將問題進(jìn)行了等價(jià)轉(zhuǎn)化。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知曲線是動(dòng)點(diǎn)到兩個(gè)定點(diǎn)距離之比為的點(diǎn)的軌跡。
          (1)求曲線的方程;(2)求過點(diǎn)與曲線相切的直線方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (10分)過直角坐標(biāo)平面中的拋物線,直線過焦點(diǎn)且與拋物線相交于,兩點(diǎn).
          ⑴當(dāng)直線的傾斜角為時(shí),用表示的長度;
          ⑵當(dāng)且三角形的面積為4時(shí),求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過點(diǎn),又知直線與雙曲線C相交于A、B兩點(diǎn).
          (1)求雙曲線C的方程;
          (2)若,求實(shí)數(shù)k值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分) 已知橢圓的離心率,A,B
          分別為橢圓的長軸和短軸的端點(diǎn),為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.
          (1)求橢圓的方程;
          (2)過(-1,0)的直線交橢圓于P,Q兩點(diǎn),求△POQ面積最大時(shí)直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)已知橢圓的對稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,離心率,分別為橢圓的上頂點(diǎn)和右頂點(diǎn),且
          (Ⅰ)求橢圓的方程;
          (Ⅱ)已知直線與橢圓相交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題10分)已知,動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡是曲線,直線與曲線交于兩點(diǎn).(1)求曲線的方程;
          (2)若,求實(shí)數(shù)的值;
          (3)過點(diǎn)作直線垂直,且直線與曲線交于兩點(diǎn),求四邊形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (12分)已知橢圓右焦點(diǎn)為,M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且是等腰直角三角形,(1)求橢圓的方程(2)過M分別作直線MA,MB,交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為,且,證明:直線AB過定點(diǎn),并求定點(diǎn)的坐標(biāo)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).
          (1) 求橢圓C的方程;
          (2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.

          查看答案和解析>>

          同步練習(xí)冊答案