【題目】已知函數(shù)且
.
(1)求a;
(2)證明:存在唯一的極大值點
,且
.
【答案】(1)a=1;(2)見解析.
【解析】試題分析:(1)根據(jù)題意結(jié)合導函數(shù)與原函數(shù)的關(guān)系可求得,注意驗證結(jié)果的正確性;(2)結(jié)合(1)的結(jié)論構(gòu)造函數(shù)
,結(jié)合
的單調(diào)性和
的解析式即可證得題中的不等式成立.
試題解析:(1)的定義域為
設(shè),則
等價于
因為
若a=1,則.當0<x<1時,
單調(diào)遞減;當x>1時,
>0,
單調(diào)遞增.所以x=1是
的極小值點,故
綜上,a=1
(2)由(1)知
設(shè)
當時,
;當
時,
,所以
在
單調(diào)遞減,在
單調(diào)遞增
又,所以
在
有唯一零點x0,在
有唯一零點1,且當
時,
;當
時,
,當
時,
.
因為,所以x=x0是f(x)的唯一極大值點
由
由得
因為x=x0是f(x)在(0,1)的最大值點,由得
所以
點睛:導數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學中重要的知識點,所以在歷屆高考中,對導數(shù)的應(yīng)用的考查都非常突出.導數(shù)專題在高考中的命題方向及命題角度:從高考來看,對導數(shù)的應(yīng)用的考查主要從以下幾個角度進行:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系;(2)利用導數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性求參數(shù);(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題;(4)考查數(shù)形結(jié)合思想的應(yīng)用.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC= AA1 , D是棱AA1的中點.
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的 倍,P為側(cè)棱SD上的點.
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P﹣AC﹣D的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解高三年級學生寒假期間的學習情況,某學校抽取了甲、乙兩班作為對象,調(diào)查這兩個班的學生在寒假期間平均每天學習的時間(單位:小時),統(tǒng)計結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學生人數(shù)相同,甲班學生平均每天學習時間在區(qū)間的有8人.
(I)求直方圖中的值及甲班學生平均每天學習時間在區(qū)間
的人數(shù);
(II)從甲、乙兩個班平均每天學習時間大于10個小時的學生中任取4人參加測試,設(shè)4人中甲班學生的人數(shù)為,求
的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知: =(2sinx,2cosx),
=(cosx,﹣cosx),f(x)=
.
(1)若 與
共線,且x∈(
,π),求x的值;
(2)求函數(shù)f(x)的周期;
(3)若對任意x∈[0, ]不等式m﹣2≤f(x)≤m+
恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】方程 =﹣1表示的曲線即為函數(shù)y=f(x),有如下結(jié)論:( ) ①函數(shù)f(x)在R上單調(diào)遞減;
②函數(shù)F(x)=4f(x)+3x不存在零點;
③函數(shù)y=f(x)的值域是R;
④若函數(shù)g(x)和f(x)的圖象關(guān)于原點對稱,則函數(shù)y=g(x)的圖象就是方程 =﹣1確定的曲線.
其中所有正確的命題序號是( )
A.①②
B.②③
C.①③④
D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。M分為100分).
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
(Ⅰ)求圖中的值;
(Ⅱ)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關(guān)?
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為,求
的分布列與數(shù)學期望
.
(參考公式:,其中
)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐曲線 為參數(shù))和定點
F1 , F2是圓錐曲線的左右焦點。
(1)求經(jīng)過點F2且垂直于直線AF1的直線l的參數(shù)方程;
(2)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,求直線AF2的極坐標方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com