【題目】已知定義在(0, )上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且對(duì)于任意的x∈(0,
),都有f′(x)sinx<f(x)cosx,則( )
A. f(
)>
f(
)
B.f( )>f(1)
C. f(
)<f(
)
D. f(
)<f(
)
【答案】A
【解析】解:構(gòu)造函數(shù)g(x)= ,則f′(x)=
<0在x∈(0,
)恒成立,
∴g(x)在(0, )單調(diào)遞減,
∴g( )>g(
)>g(1)>g(
),
∴ >
>
>
,
∴ f(
)>f(
),
f(
)>f(
),
f(
)>
f(
),sin
f(1)>sin1f(
),故無(wú)法比較f(
)與f(1)
故選:A
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解基本求導(dǎo)法則的相關(guān)知識(shí),掌握若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)對(duì)于一切實(shí)數(shù)x,y均有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0,則當(dāng)x∈(0, ),不等式f(x)+2<logax恒成立時(shí),實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù),
),曲線
的參數(shù)方程為
(
為參數(shù)),以
為極點(diǎn),
軸的正半軸為極軸建立坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程和曲線
的普通方程;
(2)射線與曲線
的交點(diǎn)為
,與曲線
的交點(diǎn)為
,求線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是某地搜集到的新房屋的銷(xiāo)售價(jià)格和房屋的面積
的數(shù)據(jù):
房屋面積( | 115 | 110 | 80 | 135 | 105 |
銷(xiāo)售價(jià)格(萬(wàn)元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫(huà)出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線;
(3)據(jù)(2)的結(jié)果估計(jì)當(dāng)房屋面積為150時(shí)的銷(xiāo)售價(jià)格.附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,能推斷這個(gè)幾何體可能是三棱臺(tái)的是( )
A.A1B1=2,AB=3,B1C1=3,BC=4
B.A1Bl=1,AB=2,BlCl=1.5,BC=3,A1C1=2,AC=3
C.AlBl=1,AB=2,B1Cl=1.5,BC=3,AlCl=2,AC=4
D.AB=A1B1 , BC=B1C1 , CA=C1A1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知過(guò)點(diǎn) 的光線,經(jīng)
軸上一點(diǎn)
反射后的射線
過(guò)點(diǎn)
.
(1)求點(diǎn) 的坐標(biāo);
(2)若圓 過(guò)點(diǎn)
且與
軸相切于點(diǎn)
,求圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和x軸都相切,則該圓的標(biāo)準(zhǔn)方程是( )
A.(x-2)2+(y-1)2=1
B.(x-2)2+(y-3)2=1
C.(x-3)2+(y-2)2=1
D.(x-3)2+(y-1)2=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求曲線
在點(diǎn)
處的切線方程;
(2)若在
處取得極小值,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com