日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 我們把離心率為黃金比的橢圓稱為“優(yōu)美橢圓”.設(shè) 為“優(yōu)美橢圓”,F(xiàn)、A分別是左焦點和右頂點,B是短軸的一個端點,則 (  )
          A.60° B.75°C.90°D.120°
          C

          試題分析:由已知=,2c2=(3-)a2,所以 ,
          =,
          從而+=+==
          點評:中檔題,注意到選項均為角度值,所以應(yīng)從研究三角形ABF的邊的關(guān)系入手。本題對計算能力要求較高。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)已知橢圓)的離心率為,過右焦點且斜率為1的直線交橢圓兩點,為弦的中點。
          (1)求直線為坐標(biāo)原點)的斜率;
          (2)設(shè)橢圓上任意一點,且,求的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系中,的兩個頂點的坐標(biāo)分別是(-1,0),(1,0),點的重心,軸上一點滿足,且.
          (1)求的頂點的軌跡的方程;
          (2)不過點的直線與軌跡交于不同的兩點、,當(dāng)時,求的關(guān)系,并證明直線過定點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分13分)已知函數(shù)(其中為常數(shù))的圖像經(jīng)過點A、B是函數(shù)圖像上的點,正半軸上的點.
          (1) 求的解析式;
          (2) 設(shè)為坐標(biāo)原點,是一系列正三角形,記它們的邊長是,求數(shù)列的通項公式;
          (3) 在(2)的條件下,數(shù)列滿足,記的前項和為,證明:。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分12分)設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點.
          (Ⅰ)求橢圓E的方程;
          (Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且?若存在,寫出該圓的方程,若不存在說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          我國發(fā)射的“神舟七號”飛船的運行軌道是以地球的中心為一個焦點的橢圓,近地點A距地面為千米,遠地點B距地面為千米,地球半徑為千米,則飛船運行軌道的短軸長為(   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分14分)
          已知橢圓的離心率為,短軸一個端點到右焦點的距離為.
          (1)求橢圓的方程;
          (2)設(shè)直線與橢圓交于兩點,坐標(biāo)原點到直線的距離為,求
          面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知橢圓的右焦點為,點在橢圓上,以點為圓心的圓與軸相切,且同時與軸相切于橢圓的右焦點,則橢圓的離心率為         

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          雙曲線的實軸長、虛軸長與焦距的和為8,則半焦距的取值范圍是        (答案用區(qū)間表示)

          查看答案和解析>>

          同步練習(xí)冊答案