日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設函數(shù)f(x)=mx2-mx-1
          (1)若對一切實數(shù)x,f(x)<0恒成立,求m的取值范圍.
          (2)若對一切實數(shù)m∈[-2,2],f(x)<-m+5恒成立,求x的取值范圍.
          分析:(1)當m=0時,f(x)=mx2-mx-1=-1,對一切實數(shù)x,f(x)<0恒成立;當m≠0時,若對一切實數(shù)x,f(x)<0恒成立,則有
          m<0
          m2+4m<0
          ,由此能求出m的取值范圍.
          (2)由f(x)<-m+5,知(x2-x+1)m-6<0,由對一切實數(shù)m∈[-2,2],f(x)<-m+5恒成立,知只需2(x2-x+1)-6<0,解得-1<x<2.由此能求出x的取值范圍.
          解答:解:(1)當m=0時,f(x)=mx2-mx-1=-1,對一切實數(shù)x,f(x)<0恒成立;
          當m≠0時,若對一切實數(shù)x,f(x)<0恒成立,
          則有
          m<0
          m2+4m<0
          ,
          ∴-4<m<0,
          綜上,m的取值范圍是(-4,0].
          (2)∵f(x)<-m+5,
          ∴mx2-mx-1<-m+5,
          ∴(x2-x+1)m-6<0,
          ∵對一切實數(shù)m∈[-2,2],f(x)<-m+5恒成立,
          且x2-x+1>0,
          ∴只需2(x2-x+1)-6<0,
          解得-1<x<2.
          ∴x的取值范圍是(-1,2).
          點評:本題考查函數(shù)的恒成立問題,解題時要認真審題,仔細解答,注意挖掘題設中的隱含條件,合理地進行等價轉化.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          4、設函數(shù)f(x)=x2+mx(x∈R),則下列命題中的真命題是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中a2+b2≠0且ω>0.設f(x)=
          OA
          OB

          (1)若a=
          3
          ,b=1,ω=2,求方程f(x)=1在區(qū)間[0,2π]內的解集;
          (2)若點A是過點(-1,1)且法向量為
          n
          =(-1,1)
          的直線l上的動點.當x∈R時,設函數(shù)f(x)的值域為集合M,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實數(shù)m的最大值;
          (3)根據(jù)本題條件我們可以知道,函數(shù)f(x)的性質取決于變量a、b和ω的值.當x∈R時,試寫出一個條件,使得函數(shù)f(x)滿足“圖象關于點(
          π
          3
          ,0)
          對稱,且在x=
          π
          6
          處f(x)取得最小值”.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (選修4-5:不等式選講)
          設函數(shù)f(x)=mx-2+|2x-1|.
          (1)若m=2,解不等式f(x)≤3;
          (2)若函數(shù)f(x)有最小值,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)=
          mx+2
          x-1
          的圖象關于點(1,1)對稱.
          (1)求m的值;
          (2)若直線y=a(a∈R)與f(x)的圖象無公共點,且f(|t-2|+
          3
          2
          )<2a+f(4a),求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)=mx2-mx-1.
          (1)若對于一切實數(shù)x,f(x)<0恒成立,求m的取值范圍;
          (2)對于x∈[1,3],f(x)>-m+x-1恒成立,求m的取值范圍.

          查看答案和解析>>

          同步練習冊答案