日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 4、設(shè)函數(shù)f(x)=x2+mx(x∈R),則下列命題中的真命題是( 。
          分析:從函數(shù)的奇偶性的定義進行判斷,對于f(x)=x2+mx,不論m為何值時,定義域總是R,故而只需求出f(-x)和-f(x),即f(-x)=(-x)2+m(-x)=x2-mx,-f(x),若函數(shù)為奇函數(shù),則f(-x)=-f(x),即x2-mx=-x2-mx恒成立,而x2-mx=-x2-mx恒成立是不可能,故不論m為何值均不能使f(x)為奇函數(shù);若函數(shù)為偶函數(shù),則f(-x)=f(x),即x2+mx=x2-mx恒成立,故只需要m為0時即可
          解答:解:由題意知函數(shù)的定義域均為R
          若函數(shù)為奇函數(shù)
          則f(-x)=-f(x),
          即x2-mx=-x2-mx恒成立,
          而x2-mx=-x2-mx只有在x=0時才成立,而題中給出的x是一切實數(shù),故x2-mx=-x2-mx恒成立是不可能,
          故不論m為何值均不能使f(x)為奇函數(shù);
          若函數(shù)為偶函數(shù),
          則f(-x)=f(x),
          即x2+mx=x2-mx恒成立,
          故只需要m為0時即可
          故選D
          點評:本題考查了二次函數(shù)的性質(zhì),函數(shù)奇偶性的判斷,屬于基礎(chǔ)題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
          (1)判斷函數(shù)f(x)的奇偶性;
          (2)求函數(shù)f(x)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數(shù)a的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
          1x+1
          ).
          (1)討論f(x)的單調(diào)性.
          (2)若f(x)有兩個極值點x1,x2,且x1<x2,求f(x2)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
          (1)若曲線y=f(x)在x=1處的切線為y=x,求實數(shù)m的值;
          (2)當m=2時,若方程f(x)-h(x)=0在[1,3]上恰好有兩個不同的實數(shù)解,求實數(shù)a的取值范圍;
          (3)是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
          (1)若a=-6,求f(x)在[0,3]上的最值;
          (2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實數(shù)a的取值范圍;
          (3)求證:不等式ln
          n+1
          n
          n-1
          n3
          (n∈N*)恒成立.

          查看答案和解析>>

          同步練習冊答案