日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,平面⊥平面,,四邊形是直角梯形,,,分別為的中點(diǎn).

          (Ⅰ) 用幾何法證明:平面;
          (Ⅱ)用幾何法證明:平面

          (1)利用三角形的中位線的性質(zhì),先證明四邊形ODBF是平行四邊形,從而可得OD∥FB,利用線面平行的判定,可以證明OD∥平面ABC;(2)利用平面ABDE⊥平面ABC,證明BD⊥平面ABC,進(jìn)而可證平面ABDE;

          解析試題分析:(Ⅰ)證明:取中點(diǎn),連結(jié). ∵的中點(diǎn),的中點(diǎn),
          , 又
          ,
          ∴四邊形是平行四邊形.
                              4分
          又∵平面平面,
          平面.             6分
          (Ⅱ)證明:中點(diǎn),∴, 8分
          又∵面⊥面,面,
          .       12分
          考點(diǎn):線面平行,線面垂直
          點(diǎn)評(píng):本題考查線面平行,考查線面垂直,考查線面角,解題的關(guān)鍵是正確運(yùn)用線面平行與垂直的判定與性質(zhì),正確運(yùn)用向量法求線面角.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱錐F-ABCD的底面ABCD是菱形,其對(duì)角線AC=2,BD=,AE、CF都與平面ABCD垂直,AE=1,CF=2.

          (I)求二面角B-AF-D的大;
          (II)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐ABCD-PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

          (Ⅰ)求PD與BC所成角的大。
          (Ⅱ)求證:BC⊥平面PAC;
          (Ⅲ)求二面角A-PC-D的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在直角梯形ABCD中,AD//BC,,,如圖(1).把沿翻折,使得平面,如圖(2).

          (Ⅰ)求證:;
          (Ⅱ)求三棱錐的體積;
          (Ⅲ)在線段上是否存在點(diǎn)N,使得?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在五棱錐P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=,AB=2,BC=2AE=4,是等腰三角形.

          (Ⅰ)求證:平面PCD⊥平面PAC;
          (Ⅱ)求四棱錐P—ACDE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知直三棱柱的三視圖如圖所示,的中點(diǎn).

          (Ⅰ)求證:∥平面;
          (Ⅱ)求二面角的余弦值;
          (Ⅲ)試問線段上是否存在點(diǎn),使 角?若存在,確定點(diǎn)位置,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在如圖所示的幾何體中,面為正方形,面為等腰梯形,,,,.

          (1)求證:;
          (2)求三棱錐的體積;
          (3)線段上是否存在點(diǎn),使//平面?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在正方體中,的中點(diǎn).

          (1)求證:平面;
          (2)求證:平面平面.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案