日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)上的最值;

          (2)令,若時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

          (3)當(dāng)時(shí),證明.

          【答案】(Ⅰ); (Ⅱ); (Ⅲ)證明過程見解析.

          【解析】試題分析:(Ⅰ)根據(jù)曲線在點(diǎn)處的切線斜率為1,可求出參數(shù)的值,再對(duì)導(dǎo)函數(shù)的正負(fù),求出上單調(diào)性,即可求出 的最值;(Ⅱ)由,構(gòu)造輔助函數(shù),再對(duì)進(jìn)行求導(dǎo),討論的取值范圍,利用函數(shù)單調(diào)性判斷函數(shù)的最值,進(jìn)而確定的取值范圍;(Ⅲ)構(gòu)造輔助函數(shù),求導(dǎo),求出在的單調(diào)性,可求出的最小值,即可證明不等式成立.

          試題解析:(Ⅰ)∵,∴,∴,

          ,記,∴,令

          當(dāng)時(shí), 單減;當(dāng)時(shí), 單增,

          ,

          恒成立,所以上單調(diào)遞增,

          (Ⅱ)∵,∴

          ,∴

          當(dāng)時(shí), ,∴上單增,∴

          (i)當(dāng)時(shí), 恒成立,即,∴上單增,

          ,所以

          (ii)當(dāng)時(shí),∵上單增,且

          當(dāng)時(shí), ,

          ,使,即

          當(dāng)時(shí), ,即單減;

          當(dāng)時(shí), ,即單增.

          ,由,∴,記,

          ,∴上單調(diào)遞增,

          ,∴,

          綜上,

          (Ⅲ)等價(jià)于,

          ,∴等價(jià)于

          ,∴

          當(dāng)時(shí), 單減;

          當(dāng)時(shí), , 單增.

          處有極小值,即最小值,

          ,

          時(shí),不等式成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.

          (Ⅰ)求直方圖中a的值;
          (Ⅱ)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
          (Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計(jì)x的值,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span>
          A.(﹣∞,11)
          B.(1,11]
          C.(1,11)
          D.(1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的不等式x2﹣ax﹣2>0的解集為{x|x<﹣1或x>b}(b>﹣1).
          (1)求a,b的值;
          (2)當(dāng)m>﹣ 時(shí),解關(guān)于x的不等式(mx+a)(x﹣b)>0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為方便市民休閑觀光,市政府計(jì)劃在半徑為200米,圓心角為120°的扇形廣場(chǎng)內(nèi)(如圖所示),沿△ABC邊界修建觀光道路,其中A、B分別在線段CP、CQ上,且A、B兩點(diǎn)間距離為定長(zhǎng) 米.

          (1)當(dāng)∠BAC=45°時(shí),求觀光道BC段的長(zhǎng)度;
          (2)為提高觀光效果,應(yīng)盡量增加觀光道路總長(zhǎng)度,試確定圖中A、B兩點(diǎn)的位置,使觀光道路總長(zhǎng)度達(dá)到最長(zhǎng)?并求出總長(zhǎng)度的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 ()的焦距為4,左、右焦點(diǎn)分別為,且 與拋物線 的交點(diǎn)所在的直線經(jīng)過.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)過 的直線 交于兩點(diǎn),與拋物線無公共點(diǎn),求的面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】解關(guān)于x的不等式(a2﹣4)x2+4x﹣1>0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1﹣x).
          (1)求f(x)及g(x)的解析式;
          (2)求g(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)P是曲線C: ﹣y2=1上的任意一點(diǎn),直線l:x=2與雙曲線C的漸近線交于A,B兩點(diǎn),若 ,(λ,μ∈R,O為坐標(biāo)原點(diǎn)),則下列不等式恒成立的是(
          A.λ22
          B.λ22≥2
          C.λ22
          D.λ22≤2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案