【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: ,
,
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于
的線性回歸方程
;(
的值精確到0.01)
(3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
【答案】(1)答案見解析;(2) ;(3)中度高血壓人群.
【解析】試題分析:(1)將數(shù)據(jù)對(duì)應(yīng)描點(diǎn),即得散點(diǎn)圖,(2)先求均值,再代人公式求,利用
求
,(3)根據(jù)回歸直線方程求自變量為180時(shí)對(duì)應(yīng)函數(shù)值,再求與標(biāo)準(zhǔn)值的倍數(shù),確定所屬人群.
試題解析:(1)
(2)
∴
∴回歸直線方程為.
(3)根據(jù)回歸直線方程的預(yù)測(cè),年齡為70歲的老人標(biāo)準(zhǔn)收縮壓約為(mmHg)∵
∴收縮壓為180mmHg的70歲老人為中度高血壓人群.
【題型】解答題
【結(jié)束】
19
【題目】如圖,四棱柱的底面為菱形,
,
,
為
中點(diǎn).
(1)求證: 平面
;
(2)若底面
,且直線
與平面
所成線面角的正弦值為
,求
的長(zhǎng).
【答案】(1)證明見解析;(2)2.
【解析】試題分析:(1)設(shè)為
的中點(diǎn),根據(jù)平幾知識(shí)可得四邊形
是平行四邊形,即得
,再根據(jù)線面平行判定定理得結(jié)論,(2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解得平面
一個(gè)法向量,根據(jù)向量數(shù)量積求向量夾角,再根據(jù)線面角與向量夾角互余關(guān)系列等式,解得
的長(zhǎng).
試題解析:(1)證明:設(shè)為
的中點(diǎn),連
因?yàn)?/span>,又
,所以
,
所以四邊形是平行四邊形,
所以
又平面
,
平面
,
所以平面
.
(2)因?yàn)?/span>是菱形,且
,
所以是等邊三角形
取中點(diǎn)
,則
,
因?yàn)?/span>平面
,
所以,
建立如圖的空間直角坐標(biāo)系,令,
則,
,
,
,
,
,
,
設(shè)平面的一個(gè)法向量為
,
則且
,
取,設(shè)直線
與平面
所成角為
,
則,
解得,故線段
的長(zhǎng)為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過原點(diǎn)的一條直線與橢圓=1(a>b>0)交于A,B兩點(diǎn),以線段AB為直徑的圓過該橢圓的右焦點(diǎn)F2,若∠ABF2∈[
],則該橢圓離心率的取值范圍為( 。
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的偶函數(shù)滿足
,且
時(shí),
,則函數(shù)
的零點(diǎn)個(gè)數(shù)是( )
A. 6個(gè)B. 8個(gè)C. 2個(gè)D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩條不同的直線,
是兩個(gè)不同的平面,則下列命題中正確的是( )
A. 若,
,則
B. 若,
,則
C. 若,
,
,則
D. 若,且
,點(diǎn)
,直線
,則
【答案】C
【解析】A. 若,
,則
或
;
B. 若,
,則
無交點(diǎn),即平行或異面;
C. 若,
,
,過
作平面與
分別交于直線s,t,則
,
,所以
t,再根據(jù)線面平行判定定理得
,因?yàn)?/span>
,
,所以
,即
D. 若,且
,點(diǎn)
,直線
,當(dāng)B在平面
內(nèi)時(shí)才有
,
綜上選C.
【題型】單選題
【結(jié)束】
11
【題目】甲、乙、丙、丁四位同學(xué)參加比賽,只有其中三位獲獎(jiǎng).甲說:“乙或丙未獲獎(jiǎng)”;乙說:“甲、丙都獲獎(jiǎng)”;丙說:“我未獲獎(jiǎng)”;丁說:“乙獲獎(jiǎng)”.四位同學(xué)的話恰有兩句是對(duì)的,則( )
A. 甲和乙不可能同時(shí)獲獎(jiǎng) B. 丙和丁不可能同時(shí)獲獎(jiǎng)
C. 乙和丁不可能同時(shí)獲獎(jiǎng) D. 丁和甲不可能同時(shí)獲獎(jiǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(n)是定義在N*上的增函數(shù),f(4)=5,且滿足:
①任意n∈N*,f(n) Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).
(1)求f(1),f(2),f(3)的值;
(2)求f(n)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:
的左、右焦點(diǎn)分別為
、
,若橢圓過點(diǎn)
.
(1)求橢圓的方程;
(2)若為橢圓的左、右頂點(diǎn),
(
)為橢圓上一動(dòng)點(diǎn),設(shè)直線
分別交直線
:
于點(diǎn)
,判斷線段
為直徑的圓是否經(jīng)過定點(diǎn),若是,求出該定點(diǎn)坐標(biāo);若不恒過定點(diǎn),說明理由.
【答案】(1) ;(2)答案見解析.
【解析】試題分析:(1)將點(diǎn)坐標(biāo)代人橢圓方程 并與離心率聯(lián)立方程組,解得,
(2)根據(jù)點(diǎn)斜式得直線
方程,與直線
聯(lián)立解得點(diǎn)
坐標(biāo),根據(jù)向量關(guān)系得
為直徑的圓方程,最后代人橢圓方程進(jìn)行化簡(jiǎn),并根據(jù)恒等式成立條件求定點(diǎn)坐標(biāo).
試題解析:(1)由已知,
∴①
∵橢圓過點(diǎn),
∴②
聯(lián)立①②得,
∴橢圓方程為
(2)設(shè),已知
∵,∴
∴都有斜率
∴
∴③
∵
∴④
將④代入③得
設(shè)方程
∴方程
∴
由對(duì)稱性可知,若存在定點(diǎn),則該定點(diǎn)必在軸上,設(shè)該定點(diǎn)為
則
∴
∴,∴
∴存在定點(diǎn)或
以線段
為直徑的圓恒過該定點(diǎn).
點(diǎn)睛:定點(diǎn)的探索與證明問題
(1)探索直線過定點(diǎn)時(shí),可設(shè)出直線方程為,然后利用條件建立
等量關(guān)系進(jìn)行消元,借助于直線系的思想找出定點(diǎn).
(2)從特殊情況入手,先探求定點(diǎn),再證明與變量無關(guān).
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù),曲線
在
處的切線經(jīng)過點(diǎn)
.
(1)證明: ;
(2)若當(dāng)時(shí),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓
的任意三個(gè)頂點(diǎn)為頂點(diǎn)的三角形的面積是
.
(1)求橢圓的方程;
(2)設(shè)是橢圓
的右頂點(diǎn),點(diǎn)
在
軸上.若橢圓
上存在點(diǎn)
,使得
,求點(diǎn)
橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,
的前n項(xiàng)和為
,則下列說法中正確的是( )
A.數(shù)列是遞增數(shù)列B.數(shù)列
是遞增數(shù)列
C.數(shù)列的最大項(xiàng)是
D.數(shù)列
的最大項(xiàng)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)
,
與原點(diǎn)
構(gòu)成
,且滿足
,求面積
的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為
,
,消去參數(shù)可知曲線
是圓心為
,半徑為
的圓,由直線
與曲線
相切,可得:
;則曲線C的方程為
, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得
可得曲線C的極坐標(biāo)方程.
(2)由(1)不妨設(shè)M(),
,(
),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標(biāo)方程為
,
曲線是圓心為
,半徑為
的圓,直線
與曲線
相切,可得:
;可知曲線C的方程為
,
所以曲線C的極坐標(biāo)方程為,
即.
(2)由(1)不妨設(shè)M(),
,(
),
,
,
當(dāng) 時(shí),
,
所以△MON面積的最大值為.
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù)的定義域?yàn)?/span>
;
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)實(shí)數(shù)為
的最大值,若實(shí)數(shù)
,
,
滿足
,求
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com