【題目】某校為調(diào)查期末考試中高一學(xué)生作弊情況,隨機(jī)抽取了200名高一學(xué)生進(jìn)行調(diào)查,設(shè)計(jì)了兩個(gè)問題,問題1:你出生月份是奇數(shù)嗎?問題2:期末考試中你作弊了嗎?然后讓受調(diào)查的學(xué)生每人擲一次幣,出現(xiàn)“正面朝上”則回答問題1,出現(xiàn)“反面朝上”則回答問題2,答案只能填“是”或“否”不能棄權(quán).結(jié)果統(tǒng)計(jì)后得到了53個(gè)“是”的答案,則估計(jì)有百分之幾的學(xué)生作弊了?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年11月11日是石室中學(xué)周年校慶日,學(xué)校數(shù)學(xué)愛好者社團(tuán)組織“解題迎校慶,我愛
”的活動.其中一題如下:已知數(shù)列
,其中第一項(xiàng)是
,接下來的兩項(xiàng)是
,
,再接下來的三項(xiàng)是
,
,
,依此類推.若該數(shù)列前
項(xiàng)和為
,則求滿足
,且
是
的倍數(shù)條件的整數(shù)
的個(gè)數(shù)為( )
A. 10B. 12C. 21D. 60
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)在圓
上,直線
上圓
在點(diǎn)
處的切線,過點(diǎn)
作圓
的切線與
交于
點(diǎn).
(Ⅰ)證明為定值,并求動點(diǎn)
的軌跡
的方程;
(Ⅱ)設(shè)過點(diǎn)的直線
與曲線
分別交于
和
,且
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過兩點(diǎn)
,且圓心在直線
上,直線
的方程為
。
(1)求圓的方程;
(2)證明:直線與圓
恒相交;
(3)求直線被圓
截得的弦長的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為
,且
,記
.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在圖1所示的梯形中,
,
于點(diǎn)
,且
.將梯形
沿
對折,使平面
平面
,如圖2所示,連接
,取
的中點(diǎn)
.
(1)求證:平面平面
;
(2)在線段上是否存在點(diǎn)
,使得直線
平面
?若存在,試確定點(diǎn)
的位置,并給予證明;若不存在,請說明理由;
(3)設(shè),求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某兒童樂園在“六一”兒童節(jié)推出了一項(xiàng)趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時(shí),記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎(jiǎng)勵(lì)規(guī)則如下:
①若,則獎(jiǎng)勵(lì)玩具一個(gè);
②若,則獎(jiǎng)勵(lì)水杯一個(gè);
③其余情況獎(jiǎng)勵(lì)飲料一瓶.
假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個(gè)區(qū)域劃分均勻.小亮準(zhǔn)備參加此項(xiàng)活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品集團(tuán)生產(chǎn)的火腿按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級,等級系數(shù)依次為1,2,3,…,8,其中
為標(biāo)準(zhǔn)
,
為標(biāo)準(zhǔn)
.已知甲車間執(zhí)行標(biāo)準(zhǔn)
,乙車間執(zhí)行標(biāo)準(zhǔn)
生產(chǎn)該產(chǎn)品,且兩個(gè)車間的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn).
(1)已知甲車間的等級系數(shù)的概率分布列如下表,若
的數(shù)學(xué)期望E(X1)=6.4,求
,
的值;
X1 | 5 | 6 | 7 | 8 |
P | 0.2 |
(2)為了分析乙車間的等級系數(shù),從該車間生產(chǎn)的火腿中隨機(jī)抽取30根,相應(yīng)的等級系數(shù)組成一個(gè)樣本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用該樣本的頻率分布估計(jì)總體,將頻率視為概率,求等級系數(shù)的概率分布列和均值;
(3)從乙車間中隨機(jī)抽取5根火腿,利用(2)的結(jié)果推斷恰好有三根火腿能達(dá)到標(biāo)準(zhǔn)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com