【題目】已知數(shù)列的前項和為
,且
,記
.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前
項和
.
【答案】(1);(2)
【解析】試題分析:(1)由,得
,兩式
相減得,即
,經(jīng)驗證
時也成立;(2)
,利用裂項相消法求和即可得結(jié)果.
試題解析:(1)當時,
,則
,
當時,由
,得
,
相減得,即
,經(jīng)驗證
時也成立,
所以數(shù)列的通項公式為
.
(2),
所以數(shù)列的前
項和為:
.
【方法點晴】本題主要考查等差數(shù)列的通項與求和公式之間的關(guān)系,以及裂項相消法求數(shù)列的和,屬于中檔題. 裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:
(1) ;(2)
;
(3);(4)
;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體中,四邊形
是菱形,
是邊長為2的正三角形,
,
.
(1)證明: ;
(2)若在平面
內(nèi)的正投影為
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校用簡單隨機抽樣方法抽取了30名同學(xué),對其每月平均課外閱讀時間(單位:小時)進行調(diào)查,莖葉圖如圖:
若將月均課外閱讀時間不低于30小時的學(xué)生稱為“讀書迷”.
(1)將頻率視為概率,估計該校900名學(xué)生中“讀書迷”有多少人?
(2)從已抽取的7名“讀書迷”中隨機抽取男、女“讀書迷”各1人,參加讀書日宣傳活動.
(i)共有多少種不同的抽取方法?
(ii)求抽取的男、女兩位“讀書迷”月均讀書時間相差不超過2小時的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=1,an+an+1=( )n , Sn=a1+4a2+42a3+…+4n﹣1an , 類比課本中推導(dǎo)等比數(shù)列前項和公式的方法,可求得5Sn﹣4nan= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市2017年3月1日至16日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于
表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于
表示空氣重度污染.
(1)若該人隨機選擇3月1日至3月14日中的某一天到達該市,到達后停留天(到達當日算
天),求此人停留期間空氣重度污染的天數(shù)為
天的概率;
(2)若該人隨機選擇3月7日至3月12日中的天到達該市,求這
天中空氣質(zhì)量恰有
天是重度污染的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3sin(2x+ )的圖象為C,關(guān)于函數(shù)f(x)及其圖象的判斷如下: ①圖象C關(guān)于點(
,0)對稱;
②圖象C關(guān)于直線x= 對稱;
③由圖象C向右平移 個單位長度可以得到y(tǒng)=3sin2x的圖象;
④函數(shù)f(x)在區(qū)間(﹣ ,
)內(nèi)是減函數(shù);
⑤函數(shù)|f(x)+1|的最小正周期為 .
其中正確的結(jié)論序號是 . (把你認為正確的結(jié)論序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中,側(cè)面
為矩形,
,
,
為
的中點,
與
交于點
,
側(cè)面
.
(1)證明: ;
(2)若,求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com