日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直三棱柱中,側(cè)面是正方形, 側(cè)面, ,點(diǎn)的中點(diǎn).

          (1)求證: //平面

          (2)若,垂足為,求二面角的余弦值.

          【答案】(1)見(jiàn)解析(2)

          【解析】試題分析:(1)如圖,連結(jié), 交于,連結(jié),可證的中位線(xiàn),所以,因?yàn)?/span> ,所以平面.

          (2)由已知底面,得底面,得 ,又,故, 兩兩垂直,分別以, , 所在直線(xiàn)為軸, 為原點(diǎn)建立空間直角坐標(biāo)系,分別求出平面平面的一個(gè)法向量和平面的一個(gè)法向量,根據(jù)二面角的平面角為銳角,即可求得二面角的余弦值.

          試題解析:

          (1)如圖,連結(jié), 交于,連結(jié),由是正方形,易得的中點(diǎn),從而的中位線(xiàn),所以,因?yàn)?/span>, ,所以平面.

          (2)由已知底面,得底面,得, ,又,故 , 兩兩垂直,

          如圖,分別以 , 所在直線(xiàn)為軸, 為原點(diǎn)建立空間直角坐標(biāo)系,

          設(shè),則, , , , ,

          , ,

          設(shè) ,則由

          ,即得

          于是,所以,

          ,所以,解得

          所以, , ,

          設(shè)平面的法向量是,則,即,

          ,得.

          又平面的一個(gè)法向量為,則,即

          ,得

          設(shè)二面角的平面角為,則,

          ,面,可知為銳角,

          即二面角的余弦值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】大學(xué)生小王和小張即將參加實(shí)習(xí),他們各從“崇尚科學(xué),關(guān)心社會(huì)”的荊州市荊州中學(xué)、“安學(xué)、親師、樂(lè)友、信道”的荊門(mén)市龍泉中學(xué)、“崇尚科學(xué),追求真理”的荊門(mén)市鐘祥一中、“追求卓越,崇尚一流”的襄陽(yáng)市第四中學(xué)、“文明、振奮、務(wù)實(shí)、創(chuàng)新”的襄陽(yáng)市第五中學(xué)、“千年文脈,百年一中”的宜昌市第一中學(xué)、“人走三峽,書(shū)讀夷陵”的宜昌市夷陵中學(xué)這七所省重點(diǎn)中學(xué)中隨機(jī)選擇一所參加實(shí)習(xí),兩人可選同一所或者兩所不同的學(xué)校,假設(shè)他們選擇哪所學(xué)校是等可能的,則他們?cè)谕粋(gè)市參加實(shí)習(xí)的概率為( 。

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),且.

          1)求實(shí)數(shù)的值,并指出函數(shù)的定義域;

          2)將函數(shù)圖象上的所有點(diǎn)向右平行移動(dòng)1個(gè)單位得到函數(shù)的圖象,寫(xiě)出函數(shù)的表達(dá)式;

          3)對(duì)于(2)中的,關(guān)于的函數(shù)上的最小值為2,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)、的極坐標(biāo)分別為、,曲線(xiàn)的參數(shù)方程為為參數(shù)).

          (1)求直線(xiàn)的直角坐標(biāo)方程;

          (2)若直線(xiàn)和曲線(xiàn)只有一個(gè)交點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2018衡水金卷(二)如圖,矩形中, , 于點(diǎn)

          I)若點(diǎn)的軌跡是曲線(xiàn)的一部分,曲線(xiàn)關(guān)于軸、軸、原點(diǎn)都對(duì)稱(chēng),求曲線(xiàn)的軌跡方程;

          II)過(guò)點(diǎn)作曲線(xiàn)的兩條互相垂直的弦,四邊形的面積為,探究是否為定值?若是,求出此定值,若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線(xiàn)的焦點(diǎn)為,且過(guò)點(diǎn),橢圓的離心率為,點(diǎn)為拋物線(xiàn)與橢圓的一個(gè)公共點(diǎn),且.

          (1)求橢圓的方程;

          (2)過(guò)橢圓內(nèi)一點(diǎn)的直線(xiàn)的斜率為,且與橢圓交于兩點(diǎn),設(shè)直線(xiàn),為坐標(biāo)原點(diǎn))的斜率分別為,,若對(duì)任意,存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓經(jīng)過(guò)(2,5),(﹣2,1)兩點(diǎn),并且圓心在直線(xiàn)yx.

          1)求圓的標(biāo)準(zhǔn)方程;

          2)求圓上的點(diǎn)到直線(xiàn)3x4y+230的最小距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四面體ABCD中,O是BD的中點(diǎn),CA=CB=CD=BD=2,AB=AD=

          (1)求證:AO⊥平面BCD;

          (2)求二面角O﹣AC﹣D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】拋物線(xiàn)的焦點(diǎn)為,已知點(diǎn)為拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足.過(guò)弦的中點(diǎn)作拋物線(xiàn)準(zhǔn)線(xiàn)的垂線(xiàn),垂足為,則的最大值為( )

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案