日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若數(shù)列{an}和{bn}的項數(shù)均為n,則將 定義為數(shù)列{an}和{bn}的距離.
          (1)已知 ,bn=2n+1,n∈N* , 求數(shù)列{an}和{bn}的距離dn
          (2)記A為滿足遞推關(guān)系 的所有數(shù)列{an}的集合,數(shù)列{bn}和{cn}為A中的兩個元素,且項數(shù)均為n.若b1=2,c1=3,數(shù)列{bn}和{cn}的距離大于2017,求n的最小值.
          (3)若存在常數(shù)M>0,對任意的n∈N* , 恒有 則稱數(shù)列{an}和{bn}的距離是有界的.若{an}與{an+1}的距離是有界的,求證: 的距離是有界的.

          【答案】
          (1)解:數(shù)列{an}和{bn}的前n項和分別為2n+1﹣2,n2+2n,

          ∴dn= =|2n+1﹣2﹣n2﹣2n|,

          當n=1,21+1﹣2﹣12﹣2×1=﹣1

          當n=2時,22+1﹣2﹣22﹣2×2=﹣2

          當n=3時,23+1﹣2﹣32﹣2×3=﹣1

          當n=4時,24+1﹣2﹣42﹣2×4=6,

          ∴dn= =|2n+1﹣2﹣n2﹣2n|=


          (2)解:設(shè)a1=p,其中p≠0,且p≠±1,由 ,

          ∴a2= ,a3=﹣ ,a4= ,a5=p,

          ∴a1=a5,

          因此A中數(shù)列的項周期性重復,且間隔4項重復一次,

          數(shù)列{bn}中, ,

          數(shù)列{cn}中, ,

          ∴項數(shù)n越大,數(shù)列{bn}和{cn}的距離越大.

          ,

          = ,|c1﹣b1|=1,|c2﹣b2|=1

          因此,當n=3457時, ,當n=3458時, ,

          故n的最小值為3458


          (3)證明:∵{an}與{an+1}的距離是有界的,

          ∴存在正數(shù)M,對任意的n∈N*,有|an﹣an1|+|an1+an2|+…+|a2﹣a1|≤M,

          ∵|an|=|an﹣an1+an1+an2+…+a2﹣a1+a1|≤|an﹣an1|+|an1+an2|+…+|a2﹣a1|+|a1|≤|M+|a1|,

          記|≤|M+|a1|,則有|an+12﹣an2|=|(an+1﹣an)(an+1+an)|≤|an+1﹣an|(|an+1|+|an|)≤2K|an+1﹣an|,

          ∴|an+12﹣an2|+|an2﹣an12|+…+|a22﹣a12|≤2KM,

          的距離是有界的


          【解析】(1)數(shù)列{an}和{bn}的前n項和分別為2n+1﹣2,n2+2n,根據(jù)新定義求出即可;(2)由數(shù)列的遞推公式,即可求得a2 , a3 , a4 , a5 , 求得A中數(shù)列的項周期性重復,且間隔4項重復一次,求得數(shù)列{bn}和{cn}規(guī)律,可知隨著項數(shù)n越大,數(shù)列{bn}和{cn}的距離越大,由 ,根據(jù)周期的定義,求得n的最大值;(3)根據(jù)新定義結(jié)合絕對值不等式,即可證明.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|
          (1)若函數(shù)f(x)的值域為[2,+∞),求實數(shù)a的值
          (2)若f(2﹣a)≥f(2),求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,在三棱錐A﹣BCD中,側(cè)面ABD,ACD是全等的直角三角形,AD是公共的斜邊且AD= ,BD=CD=1,另一側(cè)面ABC是正三角形.
          (1)求證:AD⊥BC;
          (2)若在線段AC上存在一點E,使ED與平面BCD成30°角,試求二面角A﹣BD﹣E的大。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(已知函數(shù)f(x)=|2x+1|+|x﹣2|,不等式f(x)≤2的解集為M.
          (1)求M;
          (2)記集合M的最大元素為m,若正數(shù)a,b,c滿足abc=m, 求證:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知α,β都是銳角,且sinα= ,tan(α﹣β)=﹣
          (1)求sin(α﹣β)的值;
          (2)求cosβ的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】中國一帶一路戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住一帶一路帶來的機遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬元, 每生產(chǎn)臺,需另投入成本(萬元), 當年產(chǎn)量不足臺時, (萬元); 當年產(chǎn)量不小于臺時 (萬元), 若每臺設(shè)備售價為萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)能全部.

          (1)求年利潤 (萬元)關(guān)年產(chǎn)(臺)的函數(shù)關(guān)系式;

          (2)年產(chǎn)為多少臺時 ,該企業(yè)在這一電子設(shè)的生產(chǎn)中所獲利最大?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】據(jù)統(tǒng)計,截至2016年底全國微信注冊用戶數(shù)量已經(jīng)突破9.27億,為調(diào)查大學生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學生中隨機抽取100位同學進行了抽樣調(diào)查,結(jié)果如下:

          微信群數(shù)量(個)

          頻數(shù)

          頻率

          0~4

          0.15

          5~8

          40

          0.4

          9~12

          25

          13~16

          a

          c

          16以上

          5

          b

          合計

          100

          1

          (Ⅰ)求a,b,c的值及樣本中微信群個數(shù)超過12的概率;
          (Ⅱ)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過12的概率;
          (Ⅲ)以(1)中的頻率作為概率,若從全市大學生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過12的人數(shù),求X的分布列和數(shù)學期望E(X).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知D= ,給出下列四個命題:
          P1(x,y)∈D,x+y+1≥0;
          P2(x,y)∈D,2x﹣y+2≤0;
          P3(x,y)∈D, ≤﹣4;
          P4(x,y)∈D,x2+y2≤2.
          其中真命題的是( )
          A.P1 , P2
          B.P2 , P3
          C.P2 , P4
          D.P3 , P4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】

          (2015·新課標Ⅱ)設(shè)函數(shù)f(x)是奇函數(shù)f(x)(xR)的導函數(shù),f(-1)=0,當x0時,xf'(x)-f(x)0,則使得f(x)0成立的x的取值范圍是()


          A.(-,-1)(0,1)
          B.(-1,0)(1,+
          C.(-,-1)(-1,0)
          D.(0,1)(1,+

          查看答案和解析>>

          同步練習冊答案