日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為
          (1)求拋物線的方程;
          (2)若拋物線與直線y=2x﹣5無公共點(diǎn),試在拋物線上求一點(diǎn),使這點(diǎn)到直線y=2x﹣5的距離最短.

          【答案】
          (1)解:設(shè)拋物線的方程為y2=2px,則

          消去y得

          = ,

          ,p2﹣4p﹣12=0,

          ∴p=﹣2,或p=6,

          ∴y2=﹣4x,或y2=12x


          (2)解:解法一、顯然拋物線y2=﹣4x與直線y=2x﹣5無公共點(diǎn),

          設(shè)點(diǎn) 為拋物線y2=﹣4x上的任意一點(diǎn),

          點(diǎn)P到直線y=2x﹣5的距離為d,

          當(dāng)t=﹣1時(shí),d取得最小值,

          此時(shí) 為所求的點(diǎn)

          解法二、顯然拋物線y2=﹣4x與直線y=2x﹣5無公共點(diǎn),

          設(shè)與直線y=2x﹣5平行且與拋物線y2=﹣4x相切的直線方程為y=2x+b,

          切點(diǎn)為P,則點(diǎn)P即為所求點(diǎn).

          消去y并化簡(jiǎn)得:4x2+4(b+1)x+b2=0,

          ∵直線與拋物線相切,

          ∴△=16(b+1)2﹣16b2=0,

          解得:

          代入方程4x2+4(b+1)x+b2=0并解得: ,∴y=﹣1

          故所求點(diǎn)為


          【解析】(1)設(shè)拋物線的方程為y2=2px,由 ,得 ,由拋物線被直線y=2x+1截得的弦長(zhǎng)為 能求出拋物線方程.(2)法一、拋物線y2=﹣4x與直線y=2x﹣5無公共點(diǎn),設(shè)點(diǎn) 為拋物線y2=﹣4x上的任意一點(diǎn),點(diǎn)P到直線y=2x﹣5的距離為d,則 ,故當(dāng)t=﹣1時(shí),d取得最小值. 法二、拋物線y2=﹣4x與直線y=2x﹣5無公共點(diǎn),設(shè)與直線y=2x﹣5平行且與拋物線y2=﹣4x相切的直線方程為y=2x+b,
          切點(diǎn)為P,則點(diǎn)P即為所求點(diǎn),由此能求出結(jié)果.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
          (1)判斷f(x)的單調(diào)性,并加以證明;
          (2)解不等式
          (3)若f(x)≤m2﹣2am+1對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中,,,分別是角A,B,C的對(duì)邊,且.

          (1)求角的值;

          (2)已知函數(shù),將的圖像向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖像,求的單調(diào)增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線在直角坐標(biāo)系中的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)系中,曲線的方程為.

          (1)寫出曲線的直角坐標(biāo)方程;

          (2)點(diǎn),若直線與曲線交于兩點(diǎn),求使為定值的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)A(6,2),B(3,2),動(dòng)點(diǎn)M滿足|MA|=2|MB|.
          (1)求點(diǎn)M的軌跡方程;
          (2)設(shè)M的軌跡與y軸的交點(diǎn)為P,過P作斜率為k的直線l與M的軌跡交于另一點(diǎn)Q,若C(1,2k+2),求△CPQ面積的最大值,并求出此時(shí)直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中, 底面, , , 分別是 的中點(diǎn), 上,且

          (1)求證: 平面;

          (2)在線段上上是否存在點(diǎn),使二面角

          的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若直線 l1和l2 是異面直線,l1在平面 α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是( )
          A.l與l1 , l2都不相交
          B.l與l1 , l2都相交
          C.l至多與l1 , l2中的一條相交
          D.l至少與l1 , l2中的一條相交

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),的公共弦的長(zhǎng)為.

          (1)求的方程;

          (2)過點(diǎn)的直線相交于,兩點(diǎn),與相交于,兩點(diǎn),且同向

          )若,求直線的斜率

          )設(shè)在點(diǎn)處的切線與軸的交點(diǎn)為,證明:直線繞點(diǎn)旋轉(zhuǎn)時(shí),總是鈍角三角形

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長(zhǎng)為8,面積為

          (Ⅰ)求橢圓的方程;

          (Ⅱ)若點(diǎn)為橢圓上一點(diǎn),直線的方程為,求證:直線與橢圓有且只有一個(gè)交點(diǎn).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案