【題目】在平面直角坐標系xOy中,曲線C上的點到點
的距離與它到直線
的距離之比為
,圓O的方程為
,曲線C與x軸的正半軸的交點為A,過原點O且異于坐標軸的直線與曲線C交于B,C兩點,直線AB與圓O的另一交點為P,直線PD與圓O的另一交點為Q,其中
,設(shè)直線AB,AC的斜率分別為
;
(1)求曲線C的方程,并證明到點M的距離
;
(2)求的值;
(3)記直線PQ,BC的斜率分別為、
,是否存在常數(shù)
,使得
?若存在,求
的值,若不存在,說明理由.
【答案】(1),證明見解析;(2)
;(3)存在;
;
【解析】
(1)利用兩點間距離公式和點到直線的距離公式列出方程,從而求出曲線的方程,并能證明
到點
的距離
;(2)設(shè)
,則
,代入橢圓方程,運用直線的斜率公式,化簡即可得到所求值;(3)聯(lián)立直線
和橢圓方程,求得
點坐標,再求出直線
和直線
的斜率,從而得到
的值.
(1)曲線上的點
到點
的距離
與它到直線的距離之比為
,
所以可得,
整理得曲線的方程為:
,
而是橢圓
的右焦點,
是橢圓上的點,
所以到點
的距離
.
(2)設(shè),則
,
所以,
所以
.
(3)聯(lián)立,得到
,
所以,其中
,
所以,
,
聯(lián)立,得到
,
所以,其中
,
所以,
,
所以,
,
所以,
所以存在常數(shù),使得
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)x∈R,其中a,b∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)存在極值點x0,且f(x1)= f(x0),其中x1≠x0,求證:x1+2x0=3;
(Ⅲ)設(shè)a>0,函數(shù)g(x)= |f(x)|,求證:g(x)在區(qū)間[0,2]上的最大值不小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)參加項目生產(chǎn)的工人為
人,平均每人每年創(chuàng)造利潤
萬元.根據(jù)現(xiàn)實的需要,從
項目中調(diào)出
人參與
項目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤
萬元(
),
項目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來
名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加
項目從事售后服務(wù)工作?
(2)在(1)的條件下,當從項目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的
時,才能使得
項目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標系中,已知曲線的方程為
,曲線
的方程為
.以極點
為原點,極軸為
軸正半軸建立直角坐標系
.
(1)求曲線,
的直角坐標方程;
(2)若曲線與
軸相交于點
,與曲線
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)的定義域為
,且存在實常數(shù)
,使得對定義域內(nèi)的任意
,都有
恒成立,那么稱此函數(shù)具有“
性質(zhì)”.
(1)判斷函數(shù)是否具有“
性質(zhì)”,若具有“
性質(zhì)”,求出所有
的值,若不具有“
性質(zhì)”,請說明理由;
(2)已知具有“
性質(zhì)”,且當
時,
,求
在
的最大值;
(3)已知函數(shù)既具有“
性質(zhì)”,又具有“
性質(zhì)”且當
時,
,若函數(shù)
圖象與直線
的公共點有
個,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,焦距為
,拋物線
的焦點F是橢圓
的頂點.
(1)求與
的標準方程;
(2)上不同于F的兩點P,Q滿足以PQ為直徑的圓經(jīng)過F,且直線PQ與
相切,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,底面△
是等腰直角三角形,
,
為側(cè)棱
的中點.
(1)求證:平面
;
(2)求異面直線與
所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,
為其前n項的和,滿足
.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前n項和為
,數(shù)列
的前n項和為
,求證:當
時
;
(3)若函數(shù)的定義域為R,并且
,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖已知橢圓,
是長軸的一個端點,弦
過橢圓的中心
,且
,
.
(Ⅰ)求橢圓的方程:
(Ⅱ)設(shè)為橢圓上異于
且不重合的兩點,且
的平分線總是垂直于
軸,是否存在實數(shù)
,使得
,若存在,請求出
的最大值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com