日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】設{an}是等差數列,數列{an}的前n項和為Sn , {bn}是各項都為正數的等比數列,且a1=b1=1,a3+b2=7,S2+b2=6 (Ⅰ)求{an},{bn}的通項公式;
          (Ⅱ)求數列{anbn}的前n項和Sn

          【答案】解:(Ⅰ)設等差數列{an}的公差為d,等比數列{bn}的公比q>0,∵a1=b1=1,a3+b2=7,S2+b2=6, ∴a3﹣(1+a2)=1,∴d=2,∴an=1+2(n﹣1)=2n﹣1.b2=7﹣a3=7﹣5=2.∴q=2,bn=2n1
          (Ⅱ)anbn=(2n﹣1)2n1
          ∴數列{anbn}的前n項和Sn=1+3×2+5×22+…+(2n﹣1)×2n1
          2Sn=2+3×22+…+(2n﹣3)×2n1+(2n﹣1)×2n ,
          ∴﹣Sn=1+2×(2+22+…+2n1)﹣(2n﹣1)×2n=1+2× ﹣(2n﹣1)×2n=(3﹣2n)×2n﹣3,
          ∴Sn=(2n﹣3)×2n+3
          【解析】(I)利用等差數列與等比數列的通項公式即可得出.(II)anbn=(2n﹣1)2n1 . 利用“錯位相減法”與等比數列的求和公式即可得出.
          【考點精析】根據題目的已知條件,利用數列的前n項和和數列的通項公式的相關知識可以得到問題的答案,需要掌握數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】已知橢圓和直線 ,橢圓的離心率,坐標原點到直線的距離為.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)已知定點,若直線過點且與橢圓相交于兩點,試判斷是否存在直線,使以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)設△AOB的外接圓圓心為E.
          (1)若⊙E與直線CD相切,求實數a的值;
          (2)設點P在圓E上,使△PCD的面積等于12的點P有且只有三個,試問這樣的⊙E是否存在,若存在,求出⊙E的標準方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】f(x)=(ax2+x﹣1)ex
          (1)當a<0時,求f(x)的單調區(qū)間;
          (2)若a=﹣1,f(x)的圖象與g(x)= x3+ x2+m的圖象有3個不同的交點,求實數m的范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD

          (1)求證:BD⊥PC;
          (2)若平面PBC與平面PAD的交線為l,求證:BC∥l.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC點,F棱AC上,且AF=3FC.

          (1)求三棱錐D﹣ABC的體積;
          (2)求證:AC⊥平面DEF;
          (3)若M為DB中點,N在棱AC上,且CN= CA,求證:MN∥平面DEF.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,已知多面體的底面是邊長為2的正方形, 底面, ,且

          (Ⅰ)記線段的中點為,在平面內過點作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

          (Ⅱ)求直線與平面所成角的正弦值;

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現的虧損.某投資人打算投資甲、乙兩個項目.根據預測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確保可能的資金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知分別是焦距為的橢圓的左、右頂點, 為橢圓上非頂點的點,直線的斜率分別為,且.

          (1)求橢圓的方程;

          (2)直線(與軸不重合)過點且與橢圓交于兩點,直線交于點,試求點的軌跡是否是垂直軸的直線,若是,則求出點的軌跡方程,若不是,請說明理由.

          查看答案和解析>>

          同步練習冊答案