日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)設(shè),為直角坐標(biāo)平面內(nèi)軸正方向上的單位向量,若向量,,且.(1)求點的軌跡的方程;(2)過點(0,3)作直線與曲線交于兩點,設(shè),是否存在這樣的直線,使得四邊形是矩形?若存在,求出直線的方程;若不存在,試說明理由.
          (Ⅰ)   (Ⅱ)  
          (1)由,得,設(shè)則動點滿足,所以點在橢圓上,且橢圓的.所以軌跡的方程為.
          (2)設(shè)直線的斜率為,則直線方程為,聯(lián)立方程組消去 得:,恒成立,設(shè),則.由,所以四邊形為平行四邊形.若存在直線,使四邊形為矩形,則,即,解得,所以直線的方程為,此時四邊形為矩形.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如下圖,已知△OFQ的面積為S,且·=1,

          (1)若S的范圍為<S<2,求向量的夾角θ的取值范圍;
          (2)設(shè)||=c(c≥2),S=c,若以O為中心,F為焦點的橢圓經(jīng)過點Q,當(dāng)||取得最小值時,求此橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在直角坐標(biāo)平面中,的兩個頂點分別的坐標(biāo)為,,平面內(nèi)兩點同時滿足下列條件:
          ;②;③
          (1)求的頂點的軌跡方程;
          (2)過點的直線與(1)中軌跡交于兩點,求的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知兩點M(-2,0)、N(2,0),點P為坐標(biāo)平面內(nèi)的動點,滿足||||+ ·=0,求動點P(x,y)的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若拋物線y=2x2上兩點A(x1,y1)、B(x2,y2)關(guān)于直線y=x+M對稱,且x1·x2=,則M等于(  )
          A.B.C.-3D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的離心率為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          直線與雙曲線的右支交于不同的兩點
          (1)求實數(shù)的取值范圍;
          (2)是否存在實數(shù),使得以線段為直徑的圓經(jīng)過雙曲線的右焦點?若存在,求出的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知實數(shù)滿足,求的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知圓,點為坐標(biāo)原點.
          (1)若圓與直線相切時,求中點的軌跡方程;
          (2)若圓與相切時,且面積最小,求直線的方程.

          查看答案和解析>>

          同步練習(xí)冊答案