已知函數(shù).
(I)求f(x)的單調(diào)區(qū)間及極值;
(II)若關(guān)于x的不等式恒成立,求實數(shù)a的集合.
(I)的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
,極小值
;(II)
.
解析試題分析:(I)先求已知函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系求函數(shù)的單調(diào)區(qū)間,根據(jù)單調(diào)性求函數(shù)的極值;(II)由已知得,求解的恒成立問題,即是求解
恒成立時
的取值集合,對
分
和
兩種情況,結(jié)合函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系進(jìn)行討論,求得每種情況下
的取值,最后結(jié)果取兩部分的并集.
試題解析:(I)函數(shù)的定義域為.
因為, 1分
令,解得
, 2分
當(dāng)時,
;當(dāng)
時,
, 3分
所以的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
. 4分
故在
處取得極小值
. 5分
(II)由知,
. 6分
①若,則當(dāng)
時,
,
即與已知條件矛盾; 7分
②若,令
,則
,
當(dāng)時,
;當(dāng)
時,
,
所以, 9分
所以要使得不等式恒成立,只需即可,
再令,則
,當(dāng)
時,
,當(dāng)
時,
,
所以在
上單調(diào)遞減;在
上單調(diào)遞增,即
,所以
,
綜上所述,的取值集合為
. 12分
考點:1、函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;2、利用導(dǎo)數(shù)研究函數(shù)的極值;3、對數(shù)函數(shù)的定義域;4、分類討論的思想.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè),
,
,
為函數(shù)
的圖象上任意不同兩點,若過
,
兩點的直線
的斜率恒大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)若函數(shù)
在x = 0處取得極值.
(1) 求實數(shù)的值;
(2) 若關(guān)于x的方程在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,求實數(shù)
的取值范圍;
(3)證明:對任意的正整數(shù)n,不等式都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)為奇函數(shù),求a的值;
(2)若函數(shù)在
處取得極大值,求實數(shù)a的值;
(3)若,求
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,其中
為常數(shù),
,函數(shù)
和
的圖像在它們與坐標(biāo)軸交點處的切線分別為
、
,且
.
(1)求常數(shù)的值及
、
的方程;
(2)求證:對于函數(shù)和
公共定義域內(nèi)的任意實數(shù)
,有
;
(3)若存在使不等式
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),
,函數(shù)
的圖象與
軸的交點也在函數(shù)
的圖象上,且在此點有公切線.
(Ⅰ)求,
的值;
(Ⅱ)試比較與
的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校內(nèi)有一塊以為圓心,
(
為常數(shù),單位為米)為半徑的半圓形(如圖)荒地,該?倓(wù)處計劃對其開發(fā)利用,其中弓形
區(qū)域(陰影部分)用于種植學(xué)校觀賞植物,
區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售.已知種植學(xué)校觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元.
(1)設(shè)(單位:弧度),用
表示弓形
的面積
;
(2)如果該?倓(wù)處邀請你規(guī)劃這塊土地,如何設(shè)計的大小才能使總利潤最大?并求出該最大值.
(參考公式:扇形面積公式,
表示扇形的弧長)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)設(shè),試討論
單調(diào)性;
(2)設(shè),當(dāng)
時,若
,存在
,使
,求實數(shù)
的
取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com