日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù) .

          (1)若函數(shù)的圖象恰好相切與點(diǎn),求實(shí)數(shù) 的值;

          (2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

          (3)求證: .

          【答案】123見解析

          【解析】試題分析:(1根據(jù)導(dǎo)數(shù)幾何意義得,即得實(shí)數(shù)的值;2利用分參法將不等式恒成立問題轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題x>1)最大值,再利用導(dǎo)數(shù)研究函數(shù)單調(diào)性單調(diào)遞減,最后根據(jù)洛必達(dá)法則求最大值,即得實(shí)數(shù)的取值范圍(3)先根據(jù)和的關(guān)系轉(zhuǎn)化為對(duì)應(yīng)項(xiàng)的關(guān)系: ,再利用(2)的結(jié)論,令,則代入放縮得證

          試題解析:1

          所以

          (2)方法一:(分參)

          時(shí), , 時(shí),顯然成立;

          時(shí),即

          ,則

          []

          上單調(diào)遞減

          方法二:(先找必要條件)

          注意到時(shí),恰有

          恒成立的必要條件為

          下面證明:當(dāng)時(shí),

          遞減,

          恒成立,即也是充分條件,故有.

          (3)不妨設(shè)項(xiàng)和,則

          要證原不等式,只需證

          而由(2)知:當(dāng)時(shí)恒有

          當(dāng)且僅當(dāng)時(shí)取等號(hào)

          ,則

          成立,從而原不等式獲證.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)關(guān)于x,y的不等式組 表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0 , y0),滿足x0﹣2y0=2,求得m的取值范圍是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)= (萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+ (萬元).每件商品售價(jià)為0.05萬元.通過市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
          (1)寫出年利潤(rùn)L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
          (2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)滿足(其中.

          (1)求函數(shù)的解析式,并判斷其奇偶性和單調(diào)性;

          2)解關(guān)于的不等式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{an}滿足a1= ,an+1﹣an+anan+1=0(n∈N*).
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)求證:a1+a1a2+a1a2a3+…+a1a2…an<1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某科研小組研究發(fā)現(xiàn):一棵水果樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系: .此外,還需要投入其它成本(如施肥的人工費(fèi)等)百元.已知這種水果的市場(chǎng)售價(jià)為16元/千克(即16百元/百千克),且市場(chǎng)需求始終供不應(yīng)求.記該棵水果樹獲得的利潤(rùn)為(單位:百元).

          (1)求的函數(shù)關(guān)系式;

          當(dāng)投入的肥料費(fèi)用為多少時(shí),該水果樹獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是(
          A.若a1+a2>0,則a2+a3>0
          B.若a1+a2<0,則a2+a3<0
          C.若0<a1<a2 , 則a2
          D.若a1<0,則(a2﹣a1)(a2﹣a3)<0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知橢圓C: + =1(a>b>0)的離心率e= ,過點(diǎn)(0,﹣b),(a,0)的直線與原點(diǎn)的距離為 ,M(x0 , y0)是橢圓上任一點(diǎn),從原點(diǎn)O向圓M:(x﹣x02+(y﹣y02=2作兩條切線,分別交橢圓于點(diǎn)P,Q.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若記直線OP,OQ的斜率分別為k1 , k2 , 試求k1k2的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算下列幾個(gè)式子,結(jié)果為 的序號(hào)是 ①tan25°+tan35° tan25°tan35°,

          ③2(sin35°cos25°+sin55°cos65°),

          查看答案和解析>>

          同步練習(xí)冊(cè)答案