【題目】如圖,已知多面體ABC﹣A1B1C1中,AA1,BB1,CC1均垂直于平面ABC,AB⊥AC,AA1=4,CC1=1,AB=AC=BB1=2.
(Ⅰ)求證:A1C⊥平面ABC1;
(Ⅱ)求二面角B﹣A1B1﹣C1的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數(shù)方程是
(
為參數(shù)),以原點
為極點,
軸正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(Ⅰ)求曲線的普通方程與直線
的直角坐標方程;
(Ⅱ)已知直線與曲線
交于
,
兩點,與
軸交于點
,求
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
、
是橢圓
的右頂點與上頂點,直線
與橢圓相交于
、
兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)當四邊形面積取最大值時,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式。
(1) 若對于所有的實數(shù)x不等式恒成立,求m的取值范圍;
(2) 設不等式對于滿足的一切m的值都成立,求x的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓
的方程為
,若直線
上至少存在一點,使得以該點為圓心,1為半徑的圓與圓
有公共點,則
的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點E到點A與點B
的直線斜率之積為
,點E的軌跡為曲線C.
(1)求C的方程;
(2)過點D作直線l與曲線C交于
,
兩點,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行調查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.
(3)估計居民月用水量的中位數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com