科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3+x2+ax+b,g(x)=x3+
x2+ 1nx+b,(a,b為常數(shù)).
(1)若g(x)在x=l處的切線方程為y=kx-5(k為常數(shù)),求b的值;
(2)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為,若存在唯一的實數(shù)x0,使得f(x0)=x0與f′(x0)=0同時成立,求實數(shù)b的取值范圍;
(3)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
為實數(shù),
),
,⑴若
,且函數(shù)
的值域為
,求
的表達式;
⑵設(shè),且函數(shù)
為偶函數(shù),判斷
是否大0?
⑶設(shè),當(dāng)
時,證明:對任意實數(shù)
,
(其中
是
的導(dǎo)函數(shù)) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com