【題目】已知是橢圓
的左、右焦點(diǎn),
為坐標(biāo)原點(diǎn),點(diǎn)
在橢圓上,線段
與
軸的交點(diǎn)
滿足
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓是以
為直徑的圓,一直線
與圓
相切,并與橢圓交于不同的兩點(diǎn)
、
,當(dāng)
,且滿足
時(shí),求
的面積
的取值范圍.
【答案】(Ⅰ);(Ⅱ)
.
【解析】
試題分析:(Ⅰ)先利用平面向量共線得到是線段
的中點(diǎn),再利用三角形的中位線和待定系數(shù)法進(jìn)行求解;(Ⅱ)先利用直線與圓相切得到
,再聯(lián)立直線和橢圓的方程,得到關(guān)于
的一元二次方程,再利用平面向量的數(shù)量積和判別式為正、三角形的面積公式得到有關(guān)表達(dá)式,再利用函數(shù)的單調(diào)性進(jìn)行求解.
試題解析:(Ⅰ)因?yàn)?/span>,所以
是線段
的中點(diǎn),所以
是
的中位線,又
所以
,所以
,又因?yàn)?/span>
,
解得,所以橢圓的標(biāo)準(zhǔn)方程為
.
(Ⅱ)因?yàn)橹本與
相切,所以
,即
聯(lián)立得
.
設(shè)
因?yàn)橹本與橢圓交于不同的兩點(diǎn)
、
,
所以,
,
,又因?yàn)?/span>
,所以
解得.
,
設(shè),則
單調(diào)遞增,
所以,即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)若在點(diǎn)
處的切線與直線
垂直,求函數(shù)
在
點(diǎn)處的切線方程;
(2)若對(duì)于,
恒成立,求正實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù),且函數(shù)
有極大值點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)(
為自然對(duì)數(shù)的底數(shù)),
時(shí),若方程
有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左頂點(diǎn)
,且點(diǎn)
在橢圓上,
分別是橢圓的左、右焦點(diǎn)。過點(diǎn)
作斜率為
的直線交橢圓
于另一點(diǎn)
,直線
交橢圓
于點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為等腰三角形,求點(diǎn)
的坐標(biāo);
(3)若,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
,
.
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)且
時(shí).
①若有兩個(gè)極值點(diǎn)
,
(
),求證:
;
②若對(duì)任意的,都有
成立,求正實(shí)數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,
,
,
為
的中點(diǎn),
為
中點(diǎn).將
沿
折起到
,使得平面
平面
(如圖2).
(1)求證:;
(2)求直線與平面
所成角的正弦值;
(3)在線段上是否存在點(diǎn)
,使得
平面
? 若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一幅標(biāo)準(zhǔn)的三角板如圖1中,為直角,
,
為直角,
,且
,把
與
拼齊使兩塊三角板不共面,連結(jié)
如圖2.
(1)若是
的中點(diǎn),
是
的中點(diǎn),求證:
平面
;
(2)在《九章算術(shù)》中,稱四個(gè)面都是直角三角形的三棱錐為“鱉臑”,若圖2中,三棱錐
的體積為2,則圖2是否為鱉臑?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)求過點(diǎn)的
的切線方程;
(2)當(dāng)時(shí),求函數(shù)
在
的最大值;
(3)證明:當(dāng)時(shí),不等式
對(duì)任意
均成立(其中
為自然對(duì)數(shù)的底數(shù),
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某景區(qū)是一個(gè)以為圓心,半徑為
的圓形區(qū)域,道路
,
成
角,且均和景區(qū)邊界相切,現(xiàn)要修一條與景區(qū)相切的觀光木棧道
,點(diǎn)
,
分別在
和
上,修建的木棧道
與道路
,
圍成的三角地塊
.
(1)求修建的木棧道與道路
,
圍成的三角地塊
面積的最小值;
(2)若景區(qū)中心與木棧道
段連線的
.
①將木棧道的長度表示為
的函數(shù),并指定定義域;
②求出木棧道的長度最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com