日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】數(shù)列{an}的前n項和Sn滿足:2Sn=3an﹣6n(n∈N*) (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)設 ,其中常數(shù)λ>0,若數(shù)列{bn}為遞增數(shù)列,求λ的取值范圍.

          【答案】解:(I)∵2Sn=3an﹣6n(n∈N*),∴n=1時,2a1=3a1﹣6,解得a1=6. 當n≥2時,2an=2(Sn﹣Sn1)=3an﹣6n﹣[3an1﹣6(n﹣1)],化為:an+3=3(an1+3).
          ∴數(shù)列{an+3}是等比數(shù)列,首項為9,公比為3.
          ∴an+3=9×3n1
          ∴an=3n+1﹣3.
          (II) = ,其中常數(shù)λ>0,
          ∵數(shù)列{bn}為遞增數(shù)列,
          ∴bn+1>bn ,

          化為:λ< =3+
          ∵數(shù)列 單調(diào)遞減,
          ∴0<λ≤3.
          ∴λ的取值范圍是(0,3]
          【解析】(I)由2Sn=3an﹣6n(n∈N*),利用遞推關系化為:an+3=3(an1+3),利用等比數(shù)列的通項公式即可得出.(II) = ,其中常數(shù)λ>0,利用數(shù)列{bn}為遞增數(shù)列,可得bn+1>bn , 化簡即可得出.
          【考點精析】利用數(shù)列的通項公式對題目進行判斷即可得到答案,需要熟知如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,AB是圓O的直徑,點C在圓O上,矩形DCBE所在的平面垂直于圓O所在的平面, ,

          (1),求三棱錐的體積;

          (2)證明:平面ACD平面BCDE

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】的內(nèi)角的對邊分別為,已知

          (1);

          (2),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】A. 選修4-1:幾何證明選講

          如圖,已知為圓的一條弦,點為弧的中點,過點任作兩條弦分別交于點.

          求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=(n+1)2(n∈N*),則數(shù)列{an}的前n項和為 Sn=

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】【2016高考北京文數(shù)】已知橢圓C:過點A(2,0),B(0,1)兩點.

          I)求橢圓C的方程及離心率;

          (Ⅱ)設P為第三象限內(nèi)一點且在橢圓C上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知向量 =(3,0), =(﹣5,5), =(2,k)
          (1)求向量 的夾角;
          (2)若 ,求k的值;
          (3)若 ⊥( ),求k的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)
          (1)a的值為多少時,f(x)是偶函數(shù)?
          (2)若對任意x∈[0,+∞),都有f(x)>0,求實數(shù)a的取值范圍.
          (3)若f(x)在區(qū)間[0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖幾何體中,矩形所在平面與梯形所在平面垂直,且, , 的中點.

          (1)證明: 平面

          (2)證明: 平面.

          查看答案和解析>>

          同步練習冊答案