【題目】產(chǎn)能利用率是工業(yè)總產(chǎn)出對(duì)生產(chǎn)設(shè)備的比率,反映了實(shí)際生產(chǎn)能力到底有多少在運(yùn)轉(zhuǎn)發(fā)揮生產(chǎn)作用.汽車(chē)制造業(yè)的產(chǎn)能利用率的正常值區(qū)間為,稱(chēng)為“安全線(xiàn)”.如圖是2017年第3季度到2019年第4季度的中國(guó)汽車(chē)制造業(yè)的產(chǎn)能利用率的統(tǒng)計(jì)圖.以下結(jié)論正確的是( )
A.10個(gè)季度中,汽車(chē)產(chǎn)能利用率低于“安全線(xiàn)”的季度有5個(gè)
B.10個(gè)季度中,汽車(chē)產(chǎn)能利用率的中位數(shù)為
C.2018年4個(gè)季度的汽車(chē)產(chǎn)能利用率的平均數(shù)為
D.與上一季度相比,汽車(chē)產(chǎn)能利用率變化最大的是2019年第4季度
【答案】AC
【解析】
由統(tǒng)計(jì)圖可知,產(chǎn)能利用率低于“安全線(xiàn)”的季度為圖表中的后5個(gè)季度,可知A正確;對(duì)這10個(gè)數(shù)據(jù)從小到大(或從大到小)排列后求第5個(gè)和第6個(gè)的平均數(shù)可得其中位數(shù);利用平均數(shù)的定義直接求平均數(shù),由圖可知汽車(chē)產(chǎn)能利用率變化最大的是2018年第1季度
10個(gè)季度中,汽車(chē)產(chǎn)能利用率低于“安全線(xiàn)”的季度為2018年第4季度到2019年第4季度,
共5個(gè)季度,A正確;10個(gè)季度中,汽車(chē)產(chǎn)能利用率的中位數(shù)為,B錯(cuò)誤;
由圖可知,2018年4個(gè)季度的汽車(chē)產(chǎn)能利用率的平均數(shù)為,C正確;
與上一季度相比,汽車(chē)產(chǎn)能利用率變化最大的是2018年第1季度,與上一季度相差,
而2019年第4季度與上一季度相差,D錯(cuò)誤.
故選:AC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為
,
,且對(duì)任意n
,
恒成立.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(2)設(shè),已知
,
,
(2<i<j)成等差數(shù)列,求正整數(shù)i,j.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知可導(dǎo)函數(shù)f(x)的定義域?yàn)?/span>,且滿(mǎn)足
,
,則對(duì)任意的
,“
”是“
”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,
為
的導(dǎo)函數(shù).
(1)討論的單調(diào)性;
(2)若,當(dāng)
時(shí),求證:
有兩個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有6名選手參加才藝比賽,其中男、女選手各3名,且3名男選手分別表演歌唱、舞蹈和魔術(shù),3名女選手分別表演歌唱、舞蹈和魔術(shù),若要求相鄰出場(chǎng)的選手性別不同且表演的節(jié)目不同,則不同的出場(chǎng)方式的種數(shù)為( )
A.6B.12C.18D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論在
上的單調(diào)性;
(2)當(dāng)時(shí),求
在
上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),且x∈(0,+∞),f(f(x)﹣ex+x)=e.若不等式2f(x)﹣f′(x)﹣3≥ax對(duì)x∈(0,+∞)恒成立,則a的取值范圍是( )
A.(﹣∞,e﹣2]B.(﹣∞,e﹣1]C.(﹣∞,2e﹣3]D.(﹣∞,2e﹣1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形
是等腰梯形,
,
,
,三角形
是等邊三角形,平面
平面
,E,F分別為
,
的中點(diǎn).
(1)求證:平面平面
;
(2)若,求直線(xiàn)
與平面
所成角的正弦值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com