日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知直線ly=x+m,m∈R

          I)若以點(diǎn)M2,0)為圓心的圓與直線l相切與點(diǎn)P,且點(diǎn)Py軸上,求該圓的方程;

          II)若直線l關(guān)于x軸對稱的直線為,問直線與拋物線Cx2=4y是否相切?說明理由.

          【答案】I

          II)當(dāng)m=1時(shí),直線與拋物線C相切;當(dāng)時(shí),直線與拋物線C不相切.

          【解析】

          1)依題意,點(diǎn)P的坐標(biāo)為(0m

          因?yàn)閳A與直線l相切與點(diǎn)P,∴MP⊥l

          解得m=2,即點(diǎn)P的坐標(biāo)為(0,2

          從而圓的半徑r==

          故所求圓的方程為;

          2)因?yàn)橹本l的方程為y=x+m

          所以直線的方程為y=xm代入

          ∴m=1時(shí),即直線與拋物線C相切

          當(dāng)m≠1時(shí),,即直線與拋物線C不相切

          綜上,當(dāng)m=1時(shí),直線與拋物線C相切;

          當(dāng)m≠1時(shí),直線與拋物線C不相切.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】202048日零時(shí)正式解除離漢通道管控,這標(biāo)志著封城76天的武漢打開城門了.在疫情防控常態(tài)下,武漢市有序復(fù)工復(fù)產(chǎn)復(fù)市,但是仍然不能麻痹大意,仍然要保持警惕,嚴(yán)密防范、慎終如始.為科學(xué)合理地做好小區(qū)管理工作,結(jié)合復(fù)工復(fù)產(chǎn)復(fù)市的實(shí)際需要,某小區(qū)物業(yè)提供了兩種小區(qū)管理方案,為了了解哪一種方案最為合理有效,物業(yè)隨機(jī)調(diào)查了50名男業(yè)主和50名女業(yè)主,每位業(yè)主對,兩種小區(qū)管理方案進(jìn)行了投票(只能投給一種方案),得到下面的列聯(lián)表:

          方案

          方案

          男業(yè)主

          35

          15

          女業(yè)主

          25

          25

          1)分別估計(jì),方案獲得業(yè)主投票的概率;

          2)判斷能否有95%的把握認(rèn)為投票選取管理方案與性別有關(guān).

          附:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的各項(xiàng)均為正數(shù),其前n項(xiàng)的積為,記.

          1)若數(shù)列為等比數(shù)列,數(shù)列為等差數(shù)列,求數(shù)列的公比.

          2)若,,且

          ①求數(shù)列的通項(xiàng)公式.

          ②記,那么數(shù)列中是否存在兩項(xiàng),(s,t均為正偶數(shù),且),使得數(shù)列,,,成等差數(shù)列?若存在,求st的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O,對稱軸為軸,其準(zhǔn)線為.

          1)求拋物線C的方程;

          2)設(shè)直線,對任意的拋物線C上都存在四個(gè)點(diǎn)到直線l的距離為,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)構(gòu)成正三角形.

          1)求橢圓C的標(biāo)準(zhǔn)方程;

          2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過FTF的垂線交橢圓C于點(diǎn)P,Q.

          i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));

          ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,為棱上的點(diǎn),且

          1)求證:平面;

          2)求二面角的余弦值;

          3)設(shè)為棱上的點(diǎn)(不與,重合),且直線與平面所成角的正弦值為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)上不具有單調(diào)性.

          (1)求實(shí)數(shù)的取值范圍;

          (2)若的導(dǎo)函數(shù),設(shè),試證明對任意兩個(gè)不相等正數(shù),不等式恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在多面體中,,四邊形和四邊形是兩個(gè)全等的等腰梯形.

          (1)求證:四邊形為矩形;

          (2)若平面平面,,,求多面體的體積.

          查看答案和解析>>

          同步練習(xí)冊答案