日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,現(xiàn)給出如下結(jié)論:
          ;②;③;④.
          其中正確結(jié)論的序號(hào)為(   )
          A.①③B.①④C.②④D.②③
          D

          試題分析:由題意得,,
          ∴當(dāng)時(shí),,當(dāng)時(shí),,
          ∴函數(shù)的增區(qū)間是,減區(qū)間是,
          ∴函數(shù)的極大值是,函數(shù)的極小值是
          ,且,
          ,解得,
          ,
          ,
          故選D.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)f(x)=lnx-ax(a>0).
          (I)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間與極值;
          (Ⅱ)若對(duì)于任意的x∈(0,+),都有f(x)<0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)函數(shù)
          (Ⅰ)若時(shí),函數(shù)取得極值,求函數(shù)的圖像在處的切線方程;
          (Ⅱ)若函數(shù)在區(qū)間內(nèi)不單調(diào),求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù).
          (1)若處取得極值,求實(shí)數(shù)的值;
          (2)求函數(shù)在區(qū)間上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù),其中實(shí)數(shù)a為常數(shù).
          (I)當(dāng)a=-l時(shí),確定的單調(diào)區(qū)間:
          (II)若f(x)在區(qū)間(e為自然對(duì)數(shù)的底數(shù))上的最大值為-3,求a的值;
          (Ⅲ)當(dāng)a=-1時(shí),證明

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù).
          (1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),討論的單調(diào)性;
          (3)若對(duì)任意的恒有成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù),),
          (Ⅰ)證明:當(dāng)時(shí),對(duì)于任意不相等的兩個(gè)正實(shí)數(shù),均有成立;
          (Ⅱ)記,
          (ⅰ)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
          (ⅱ)證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù).
          (1)若,求證:當(dāng)時(shí),;
          (2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
          (3)求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)函數(shù),其中
          (I)若函數(shù)圖象恒過(guò)定點(diǎn)P,且點(diǎn)P關(guān)于直線的對(duì)稱點(diǎn)在的圖象上,求m的值;
          (Ⅱ)當(dāng)時(shí),設(shè),討論的單調(diào)性;
          (Ⅲ)在(I)的條件下,設(shè),曲線上是否存在兩點(diǎn)P、Q,使△OPQ(O為原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案