日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)
          (Ⅰ)若時,函數(shù)取得極值,求函數(shù)的圖像在處的切線方程;
          (Ⅱ)若函數(shù)在區(qū)間內(nèi)不單調(diào),求實數(shù)的取值范圍。
          (Ⅰ)切線方程為;(Ⅱ)

          試題分析:(Ⅰ)求函數(shù)的圖像在處的切線方程,首先求出函數(shù)的解析式,而已知若時,函數(shù)取得極值,因此先求出數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)在處的值為,求出的解析式,將代入求出切點坐標(biāo),將代入導(dǎo)函數(shù)求出切線的斜率,利用點斜式求出切線的方程.(Ⅱ)若函數(shù)在區(qū)間內(nèi)不單調(diào),即函數(shù)在區(qū)間有極值,即導(dǎo)函數(shù)在區(qū)間上有解,令導(dǎo)函數(shù),分離出,求出上的范圍,從而得實數(shù)的取值范圍.
          試題解析:(Ⅰ) 由
            當(dāng)時, 即切點
          ∴切線方程為
          (Ⅱ)在區(qū)間內(nèi)不單調(diào),即有解,所以,,由,令,知單調(diào)遞減,在,所以,即,即,而當(dāng)時,∴舍去  綜上
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知P()為函數(shù)圖像上一點,O為坐標(biāo)原點,記直線OP的斜率。
          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅱ)設(shè),求函數(shù)的最小值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題13分) 已知函數(shù)為自然對數(shù)的底數(shù))。
          (1)若,求函數(shù)的單調(diào)區(qū)間;
          (2)是否存在實數(shù),使函數(shù)上是單調(diào)增函數(shù)?若存在,求出的值;若不存在,請說明理由。恒成立,則,又,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知
          (1)當(dāng)時,求上的值域;
          (2)求函數(shù)上的最小值;
          (3)證明: 對一切,都有成立

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù),,其中
          (Ⅰ) 當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
          (Ⅱ)若時,函數(shù)有極值,求函數(shù)圖象的對稱中心的坐標(biāo);
          (Ⅲ)設(shè)函數(shù) (是自然對數(shù)的底數(shù)),是否存在a使上為減函數(shù),若存在,求實數(shù)a的范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù).
          (Ⅰ)當(dāng)時,試討論的單調(diào)性;
          (Ⅱ)設(shè),當(dāng)時,若對任意,存在,使,求實數(shù)取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知函數(shù),且,則當(dāng)時, 的取值范圍是  (   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          定義在R上的函數(shù)f(x)滿足(x+2)f’(x)<0,又a=f(log0.53),b=f(()0.3),c=f(ln3),則(     )
          A.a(chǎn)<b<cB.b<c<aC.c<a<bD.c< b<a

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知,現(xiàn)給出如下結(jié)論:
          ;②;③;④.
          其中正確結(jié)論的序號為(   )
          A.①③B.①④C.②④D.②③

          查看答案和解析>>

          同步練習(xí)冊答案