日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.

          (Ⅰ)求實數(shù)的取值范圍;

          (Ⅱ)若有兩個不同的極值點,且,若不等式恒成立,求正實數(shù)的取值范圍.

          【答案】(Ⅰ)(Ⅱ)

          【解析】

          (Ⅰ)求導(dǎo)得,再轉(zhuǎn)化為的圖像在上有兩個不同的交點,再分析的函數(shù)單調(diào)性與最值,進而數(shù)形結(jié)合求解即可.

          (Ⅱ)設(shè)的兩個根,代入相減可得,再對兩邊取對數(shù),化簡即證,再構(gòu)造,分析函數(shù)的單調(diào)性證明最值,從而求得取值范圍即可.

          (Ⅰ)由題意, 有兩個不同的根,

          故方程上有兩個不同的根,轉(zhuǎn)化為函數(shù)與函數(shù)的圖象在上有兩個不同交點.

          ,故 時,. 時, ,

          上單調(diào)遞增,在上單調(diào)遞減.

          所以

          ,時, ,時,

          由圖象可得:

          (Ⅱ)由(Ⅰ)知:設(shè)的兩個根,

          ,,相減可得.

          ,,故上式即為

          ,則恒成立.

          設(shè),,

          ①若,當(dāng)時, ,時,

          上單調(diào)遞減,故當(dāng),不合題意;

          ②若,則,上單調(diào)遞增.

          時, ,恒成立.

          綜上:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解一種植物果實的情況,隨機抽取一批該植物果實樣本測量重量(單位:克),按照,,,分為5組,其頻率分布直方圖如圖所示.

          (1)求圖中的值;

          (2)估計這種植物果實重量的平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

          (3)已知這種植物果實重量不低于32.5克的即為優(yōu)質(zhì)果實,用樣本估計總體.若從這種植物果實中隨機抽取3個,其中優(yōu)質(zhì)果實的個數(shù)為,求的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=exsinx,gx)為fx)的導(dǎo)函數(shù),

          1)求fx)的單調(diào)區(qū)間;

          2)當(dāng)x[,π],證明:fx+gx)(πx≥0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某人沿固定路線開車上班,沿途共有個紅綠燈,他對過去個工作日上班途中的路況進行了統(tǒng)計,得到了如表的數(shù)據(jù):

          上班路上遇見的紅燈數(shù)

          天數(shù)

          若一路綠燈,則他從家到達公司只需用時分鐘,每遇一個紅燈,則會多耗時分鐘,以頻率作為概率的估計值

          1)試估計他平均每天上班需要用時多少分鐘?

          2)若想以不少于的概率在早上點前(含點)到達公司,他最晚何時要離家去公司?

          3)公司規(guī)定,員工應(yīng)早上點(含點)前打卡考勤,否則視為遲到,每遲到一次,會被罰款.因某些客觀原因,在接下來的個工作日里,他每天早上只能從家出發(fā)去公司,求他因遲到而被罰款的期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)有位學(xué)生申請、、三所大學(xué)的自主招生.若每位學(xué)生只能申請其中一所大學(xué),且申請其中任何一所大學(xué)是等可能的.

          1)求恰有人申請大學(xué)的概率;

          2)求被申請大學(xué)的個數(shù)的概率分布列與數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,角A、B、C所對的邊長分別為ab、c,且acosB+bcosA2ccosB

          1)若a3,求c的值;

          2)若,求fA)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的左,右焦點,上頂點為為橢圓上任意一點,且的面積最大值為.

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)若點.為橢圓上的兩個不同的動點,且為坐標(biāo)原點),則是否存在常數(shù),使得點到直線的距離為定值?若存在,求出常數(shù)和這個定值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy.直線1的參數(shù)方程為t為參數(shù)).在以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸的極坐標(biāo)系中.曲線C的極坐標(biāo)方程為ρ2cosθ.

          1)若曲線C關(guān)于直線l對稱,求a的值;

          2)若A、B為曲線C上兩點.且∠AOB,求|OA|+|OB|的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù)(其中).

          (1)當(dāng)時,求不等式的解集;

          (2)若關(guān)于的不等式恒成立,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案