日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】英州育才中學(xué)某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與市醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料(表):

          日期

          晝夜溫差

          就診人數(shù)()

          該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗.

          (1)求選取的組數(shù)據(jù)恰好是相鄰兩個月的概率;

          (2)求選取的是月與月的兩組數(shù)據(jù),請根據(jù)月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

          其中回歸系數(shù)公式,,.

          【答案】(1);(2).

          【解析】

          試題分析:(1)組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩個月的數(shù)據(jù)的情況有種,根據(jù)古典概型概率的求法求解;(2)求出月份的數(shù)據(jù)的平均數(shù),根據(jù)給出的公式求出相關(guān)系數(shù),即可得到回歸直線方程.

          試題解析:(1)設(shè)抽到相鄰兩個月的數(shù)據(jù)為亊件,因為從組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩個月的數(shù)據(jù)的情況有種,所以.

          (2)由數(shù)據(jù)求得, 由公式求得,再由,得關(guān)于的線性回歸方程為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:

          組號

          1

          2

          3

          4

          5

          溫差

          10

          11

          13

          12

          8

          發(fā)芽數(shù)(顆)

          23

          25

          30

          26

          16

          該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.

          1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程

          2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

          (參考公式:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學(xué)在處的投中率,在處的投中率為,該同學(xué)選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:


          0

          2

          3

          4

          5


          0.03





          1)求的值;

          2)求隨機(jī)變量的數(shù)學(xué)期望;

          3)試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分12)

          某班甲、乙兩名同學(xué)參加l00米達(dá)標(biāo)訓(xùn)練,在相同條件下兩人l0次訓(xùn)練的成績(單位:秒)如下:


          1

          2

          3

          4

          5

          6

          7

          8

          9

          10


          11.6

          12.2

          13.2

          13.9

          14.0

          11.5

          13.1

          14.5

          11.7

          14.3


          12.3

          13.3

          14.3

          11.7

          12.0

          12.8

          13.2

          13.8

          14.1

          12.5

          (I)請作出樣本數(shù)據(jù)的莖葉圖;如果從甲、乙兩名同學(xué)中選一名參加學(xué)校的100米比賽,從成績的穩(wěn)定性方面考慮,選派誰參加比賽更好,并說明理由(不用計算,可通過統(tǒng)計圖直接回答結(jié)論)

          (Ⅱ)從甲、乙兩人的10次訓(xùn)練成績中各隨機(jī)抽取一次,求抽取的成績中至少有一個比128秒差的概率.

          (Ⅲ)經(jīng)過對甲、乙兩位同學(xué)的多次成績的統(tǒng)計,甲、乙的成績都均勻分布在[115,145]

          之間,現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對值小于08秒的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在矩形中,,點的中點,將沿折起到的位置,使二面角是直二面角.

          1證明: ;

          2求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為實數(shù)且.

          (1)設(shè)函數(shù).當(dāng)時,在其定義域內(nèi)為單調(diào)增函數(shù),求的取值范圍;

          (2)設(shè)函數(shù).當(dāng)時,在區(qū)間(其中為自然對數(shù)的底數(shù))上是否存在實數(shù),使得成立,若存在,求實數(shù)的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知

          1若存在使得≥0成立,求的范圍;

          2求證:當(dāng)>1時,在1的條件下,成立

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,以原點O為圓心,橢圓的短半軸長為半徑的圓與直線相切.

          (1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)若直線與橢圓相交于、兩點,且,求證:的面積為定值并求出定值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】單調(diào)遞增數(shù)列中, ,且成等差數(shù)列, 成等比數(shù)列,.

          (1)求證:數(shù)列為等差數(shù)列;

          求數(shù)列通項公式;

          (2)設(shè)數(shù)列的前項和為,證明:.

          查看答案和解析>>

          同步練習(xí)冊答案