日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•資陽一模)已知α,β是銳角,且sinα=
          5
          5
          ,sinβ=
          10
          10
          ,則α+β
          =
          π
          4
          π
          4
          分析:由α與β分別為銳角,根據(jù)sinα,sinβ的值,利用同角三角函數(shù)間的基本關(guān)系求出cosα與cosβ的值,利用兩角和與差的正弦函數(shù)公式化簡sin(α+β),將各種的值代入計算求出值,利用特殊角的三角函數(shù)值即可求出α+β的度數(shù).
          解答:解:∵α,β是銳角,sinα=
          5
          5
          ,sinβ=
          10
          10
          ,
          ∴α+β∈(0,π),cosα=
          1-sin2α
          =
          2
          5
          5
          ,cosβ=
          1-sin2β
          =
          3
          10
          10
          ,
          ∴cos(α+β)=cosαcosβ-sinαsinβ=
          2
          5
          5
          ×
          3
          10
          10
          -
          5
          5
          ×
          10
          10
          =
          2
          2
          ,
          則α+β=
          π
          4
          ..
          故答案為:
          π
          4
          點評:此題考查了兩角和與差的余弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•資陽一模)設(shè)函數(shù)f(x)=
          21-x,x≤0
          f(x-1),x>0
          若關(guān)于x的方程f(x)=x+a有且只有兩個實根,則實數(shù)a的范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•資陽一模)已知向量
          a
          ,
          b
          為單位向量,且它們的夾角為60°,則|
          a
          -3
          b
          |
          =(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•資陽一模)若a>b,則下列命題成立的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•資陽一模)已知函數(shù)f(x)=a-
          2
          2x+1
          是奇函數(shù),其反函數(shù)為f-1(x),則f-1(
          3
          5
          )
          =(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•資陽一模)已知函數(shù)f(x)=2lnx-x2+ax,a∈R.
          (1)當(dāng)a=2時,求函數(shù)f(x)的圖象在x=1處的切線的方程;
          (2)若函數(shù)f(x)-ax+m=0在[
          1e
          ,e]
          上有兩個不等的實數(shù)根,求實數(shù)m的取值范圍;
          (3)若函數(shù)f(x)的圖象與x軸交于不同的點A(x1,0),B(x2,0),且0<x1<x2,求證:f′(px1+qx2)<0(其中實數(shù)p,q滿足0<p≤q,p+q=1)

          查看答案和解析>>

          同步練習(xí)冊答案