【題目】給出下列命題:
①函數(shù) 是奇函數(shù);
②存在實數(shù)x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,則tanα<tanβ;
④ 是函數(shù)
的一條對稱軸;
⑤函數(shù) 的圖象關于點
成中心對稱.
其中正確命題的序號為 .
【答案】①④
【解析】解:①函數(shù) =﹣sin
x,而y=﹣sin
x是奇函數(shù),故函數(shù)
是奇函數(shù),故①正確;
②因為sinx,cosx不能同時取最大值1,所以不存在實數(shù)x使sinx+cosx=2成立,故②錯誤.
③令 α= ,β=
,則tanα=
,tanβ=tan
=tan
=
,tanα>tanβ,故③不成立.
④把x= 代入函數(shù)y=sin(2x+
),得y=﹣1,為函數(shù)的最小值,故
是函數(shù)
的一條對稱軸,故④正確;
⑤因為y=sin(2x+ )圖象的對稱中心在圖象上,而點
不在圖象上,所以⑤不成立.
所以答案是:①④.
科目:高中數(shù)學 來源: 題型:
【題目】已知過的動圓恒與
軸相切,設切點為
是該圓的直徑.
(Ⅰ)求點軌跡
的方程;
(Ⅱ)當不在y軸上時,設直線
與曲線
交于另一點
,該曲線在
處的切線與直線
交于
點.求證:
恒為直角三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)討論函數(shù)的單調(diào)性,并證明當時,
;
(Ⅱ)證明:當時,函數(shù)
有最小值,設
最小值為
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)= sin2x+2cos2x+m在區(qū)間[0,
]上的最大值為6,求常數(shù)m的值及此函數(shù)當x∈R時的最小值,并求相應的x的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結論正確的是
①在某項測量中,測量結果服從正態(tài)分布
.若
在
內(nèi)取值的概率為0.35,則
在
內(nèi)取值的概率為0.7;
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設
,其變換后得到線性回歸方程
,則
;
③已知命題“若函數(shù)在
上是增函數(shù),則
”的逆否命題是“若
,則函數(shù)
在
上是減函數(shù)”是真命題;
④設常數(shù),則不等式
對
恒成立的充要條件是
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位有工程師6人,技術員12人,技工18人,要從這些人中取一個容量為n的樣本;如果采用系統(tǒng)抽樣和分層抽樣方法抽取,無須剔除個體;如果樣本容量增加1個,則在采用系統(tǒng)抽樣時需要在總體中先剔除一個個體,則n的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= [
sin(x﹣
)].
(1)求f(x)的定義域和值域;
(2)說明f(x)的奇偶性;
(3)求f(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
(
)的離心率為
,
、
分別是它的左、右焦點,且存在直線
,使
、
關于
的對稱點恰好是圓
:
(
,
)的一條直徑的兩個端點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與拋物線
(
)相交于
、
兩點,射線
、
與橢圓
分別相交于點
、
.試探究:是否存在數(shù)集
,當且僅當
時,總存在
,使點
在以線段
為直徑的圓內(nèi)?若存在,求出數(shù)集
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù) 的圖象,只要將y=sinx(x∈R)的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的
倍,縱坐標不變
B.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的
倍,縱坐標不變
D.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com