日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓過(guò)點(diǎn),且其離心率為,過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別相交于兩點(diǎn).

          1)求橢圓的方程;

          2)是否存在圓心在原點(diǎn)的定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.

          【答案】12)存在;定圓

          【解析】

          (1)根據(jù)橢圓的離心率和橢圓經(jīng)過(guò)的點(diǎn)的坐標(biāo),代入橢圓方程中,求出a、b,即可得到橢圓C的方程.
          (2)根據(jù)條件,分直線的斜率不存在和直線的斜率不存在兩種情況分別求出定圓的方程,,當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,聯(lián)立方程組,,利用韋達(dá)定理,結(jié)合.推出,利用直線與圓相切,求出圓的半徑,得到圓的方程,即可得到結(jié)果.

          解:(1)橢圓經(jīng)過(guò)點(diǎn),∴,又∵,解之得,.

          所以橢圓的方程為;

          2)當(dāng)直線的斜率不存在時(shí),由對(duì)稱性,設(shè),.

          ,在橢圓上,∴,∴.

          到直線的距離為,所以.

          當(dāng)直線的斜率存在時(shí),設(shè)的方程為

          .

          設(shè),,則,.

          ,∴,

          .

          ,即.

          到直線的距離為

          故存在定圓與直線總相切.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司為了對(duì)某種商品進(jìn)行合理定價(jià),需了解該商品的月銷售量(單位:萬(wàn)件)與月銷售單價(jià)(單位:元/件)之間的關(guān)系,對(duì)近個(gè)月的月銷售量和月銷售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測(cè)數(shù)據(jù)如表所示:

          月銷售單價(jià)(元/件)

          月銷售量(萬(wàn)件)

          1)若用線性回歸模型擬合之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線方程分別為:,,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識(shí),判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說(shuō)明理由;

          2)若用模型擬合之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為,請(qǐng)用說(shuō)明哪個(gè)回歸模型的擬合效果更好;

          3)已知該商品的月銷售額為(單位:萬(wàn)元),利用(2)中的結(jié)果回答問(wèn)題:當(dāng)月銷售單價(jià)為何值時(shí),商品的月銷售額預(yù)報(bào)值最大?(精確到

          參考數(shù)據(jù):.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)

          1)求函數(shù)的最小值;

          2)設(shè),討論函數(shù)的單調(diào)性;

          3)斜率為的直線與曲線交于、兩點(diǎn),

          求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的左右焦點(diǎn)分別為,且.過(guò)橢圓的右焦點(diǎn)作長(zhǎng)軸的垂線與橢圓,在第一象限交于點(diǎn),且滿足.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)若矩形的四條邊均與橢圓相切,求該矩形面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),,則方程所有根的和等于(

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線的焦點(diǎn)為F,準(zhǔn)線為x軸于點(diǎn)A,并截圓所得弦長(zhǎng)為,M為平面內(nèi)動(dòng)點(diǎn),MAF周長(zhǎng)為6

          1)求拋物線方程以及點(diǎn)M的軌跡的方程;

          2過(guò)軌跡的一個(gè)焦點(diǎn)作與軸不垂直的任意直線交軌跡兩點(diǎn),線段的垂直平分線交軸于點(diǎn),則為定值,且定值是”.命題中涉及了這么幾個(gè)要素:給定的圓錐曲線,過(guò)該圓錐曲線焦點(diǎn)的弦的垂直平分線與焦點(diǎn)所在的對(duì)稱軸的焦點(diǎn),的長(zhǎng)度與兩點(diǎn)間距離的比值.試類比上述命題,寫出一個(gè)關(guān)于拋物線的類似的正確命題,并加以證明.

          3)試推廣(2)中的命題,寫出關(guān)于拋物線的一般性命題(不必證明).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在某次投籃測(cè)試中,有兩種投籃方案:方案甲:先在A點(diǎn)投籃一次,以后都在B點(diǎn)投籃;方案乙:始終在B點(diǎn)投籃.每次投籃之間相互獨(dú)立.某選手在A點(diǎn)命中的概率為,命中一次記3分,沒(méi)有命中得0分;在B點(diǎn)命中的概率為,命中一次記2分,沒(méi)有命中得0分,用隨機(jī)變量表示該選手一次投籃測(cè)試的累計(jì)得分,如果的值不低于3分,則認(rèn)為其通過(guò)測(cè)試并停止投籃,否則繼續(xù)投籃,但一次測(cè)試最多投籃3.

          (1)若該選手選擇方案甲,求測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望.

          (2)試問(wèn)該選手選擇哪種方案通過(guò)測(cè)試的可能性較大?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,,其中常數(shù)

          1)當(dāng)時(shí),求函數(shù)的極值;

          2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的范圍;

          3)設(shè),在區(qū)間內(nèi)是否存在區(qū)間,使函數(shù)在區(qū)間的值域也是?請(qǐng)給出結(jié)論,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖①:在平行四邊形中,,,將沿對(duì)角線折起,使,連結(jié),得到如圖②所示三棱錐.

          1)證明:平面;

          2)若,二面角的平面角的正切值為,求直線與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案