【題目】已知命題:實(shí)數(shù)
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若,且
為真,求實(shí)數(shù)
的取值范圍;
(2)若是
的充分不必要條件,求實(shí)數(shù)
的取值范圍.
【答案】(1);(2)
.
【解析】試題分析:
先由命題解得
;命題
得
,
(1)當(dāng),得命題
,再由
為真,得
真且
真,即可求解
的取值范圍.
(2)由是
的充分不必要條件,則
是
的充分必要條件,根據(jù)則
,即可求解實(shí)數(shù)
的取值范圍.
試題解析:
命題:由題得
,又
,解得
;
命題:
,解得
.
(1)若,命題
為真時(shí),
,
當(dāng)為真,則
真且
真,
∴解得
的取值范圍是
.
(2)是
的充分不必要條件,則
是
的充分必要條件,
設(shè),
,則
;
∴∴實(shí)數(shù)
的取值范圍是
.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,又知此拋物線上一點(diǎn)
到焦點(diǎn)的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點(diǎn)
、
,且
中點(diǎn)橫坐標(biāo)為2,求
的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校從參加高一年級(jí)期中考試的學(xué)生中抽出名學(xué)生,并統(tǒng)計(jì)了她們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為
分),數(shù)學(xué)成績(jī)分組及各組頻數(shù)如下:
樣本頻率分布表:
分組 | 頻數(shù) | 頻率 |
合計(jì) |
(1)在給出的樣本頻率分布表中,求的值;
(2)估計(jì)成績(jī)?cè)?/span>分以上(含
分)學(xué)生的比例;
(3)為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定成立“二幫一”小組,即從成績(jī)?cè)?/span>的學(xué)生中選兩位同學(xué),共同幫助成績(jī)?cè)?/span>
中的某一位同學(xué).已知甲同學(xué)的成績(jī)?yōu)?/span>
分,乙同學(xué)的成績(jī)?yōu)?/span>
分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別是DD1、DB的中點(diǎn),求證:
(1)EF∥平面ABC1D1;
(2)EF⊥B1C
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)黨中央“扶貧攻堅(jiān)”的號(hào)召,某單位指導(dǎo)一貧困村通過種植紫甘薯來提高經(jīng)濟(jì)收入.紫甘薯對(duì)環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗(yàn),隨著溫度的升高,其死亡株數(shù)成增長(zhǎng)的趨勢(shì).下表給出了2018年種植的一批試驗(yàn)紫甘薯在不同溫度時(shí)6組死亡的株數(shù):
溫度 | 21 | 23 | 24 | 27 | 29 | 32 |
死亡數(shù) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算:,
,
,
.
其中分別為試驗(yàn)數(shù)據(jù)中的溫度和死亡株數(shù),
.
(1)與
是否有較強(qiáng)的線性相關(guān)性? 請(qǐng)計(jì)算相關(guān)系數(shù)
(精確到
)說明.
(2)并求關(guān)于
的回歸方程
(
和
都精確到
);
(3)用(2)中的線性回歸模型預(yù)測(cè)溫度為時(shí)該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).
附:對(duì)于一組數(shù)據(jù),
,……,
,
①線性相關(guān)系數(shù),通常情況下當(dāng)
大于0.8時(shí),認(rèn)為兩
個(gè)變量有很強(qiáng)的線性相關(guān)性.
②其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)如圖所示,已知以點(diǎn)為圓心的圓與直線
相切.過點(diǎn)
的動(dòng)直線
與圓
相交于
,
兩點(diǎn),
是
的中點(diǎn),直線
與
相交于點(diǎn)
.
(1)求圓的方程;
(2)當(dāng)時(shí),求直線
的方程.
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在桂林市某中學(xué)高中數(shù)學(xué)聯(lián)賽前的模擬測(cè)試中,得到甲、乙兩名學(xué)生的6次模擬測(cè)試成績(jī)(百分制)的莖葉圖.分?jǐn)?shù)在85分或85分以上的記為優(yōu)秀.
(1)根據(jù)莖葉圖讀取出乙學(xué)生6次成績(jī)的眾數(shù),并求出乙學(xué)生的平均成績(jī)以及成績(jī)的中位數(shù);
(2)若在甲學(xué)生的6次模擬測(cè)試成績(jī)中去掉成績(jī)最低的一次,在剩下5次中隨機(jī)選擇2次成績(jī)作為研究對(duì)象,求在選出的成績(jī)中至少有一次成績(jī)記為優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面
為菱形,側(cè)面
為等邊三角形,且側(cè)面
底面
,
,
分別為
,
的中點(diǎn).
(Ⅰ)求證: .
(Ⅱ)求證:平面平面
.
(Ⅲ)側(cè)棱上是否存在點(diǎn)
,使得
平面
?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com