日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某商場經(jīng)銷某商品,顧客可以采用一次性付款或分期付款購買,根據(jù)以往資料統(tǒng)計(jì),顧客采用一次性付款的概率是,經(jīng)銷件該產(chǎn)品,若顧客采用一次性付款,商場獲得利潤元;若顧客采用分期付款,商場獲得利潤元.

          (Ⅰ)求位購買商品的顧客中至少有位采用一次性付款的概率.

          (Ⅱ)若位顧客每人購買件該商品,求商場獲得利潤不超過元的概率.

          (Ⅲ)若位顧客每人購買件該商品,設(shè)商場獲得的利潤為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

          【答案】(1);

          (2);(3)見解析.

          【解析】分析:(1)利用對(duì)立事件計(jì)算即可;

          (2)記商場獲得利潤不超過元為事件,事件包含位顧客中人均一次性付款和位顧客中只有人一次性付款,則通過計(jì)算可得;

          (3)可取,,,分別計(jì)算出對(duì)應(yīng)的概率即可.

          詳解:(Ⅰ)記表示事件:“位顧客中至少有位采用一次性付款”則事件的對(duì)立事件是“位顧客中沒有人采用一次性付款”,則:

          (Ⅱ)記商場獲得利潤不超過元為事件,事件包含位顧客中人均一次性付款和位顧客中只有人一次性付款.

          (Ⅲ)可取

          所以的分布列為

          數(shù)學(xué)期望

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(文科學(xué)生做)已知數(shù)列滿足.

          (1)求,,的值,猜想并證明的單調(diào)性;

          (2)請用反證法證明數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          1當(dāng)時(shí),的極值;

          2當(dāng)時(shí)證明 .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙、丙三名音樂愛好者參加某電視臺(tái)舉辦的演唱技能海選活動(dòng),在本次海選中有合格和不合格兩個(gè)等級(jí).若海選合格記1分,海選不合格記0分.假設(shè)甲、乙、丙海選合格的概率分別為,他們海選合格與不合格是相互獨(dú)立的.

          1)求在這次海選中,這三名音樂愛好者至少有一名海選合格的概率;

          2)記在這次海選中,甲、乙、丙三名音樂愛好者所得分之和為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,首項(xiàng),且,正項(xiàng)數(shù)列滿足,.

          (1)求數(shù)列的通項(xiàng)公式;

          (2)記,是否存在正整數(shù),使得對(duì)任意正整數(shù)恒成立?若存在,求正整數(shù)的最小值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】水是地球上寶貴的資源,由于介個(gè)比較便宜在很多不缺水的城市居民經(jīng)常無節(jié)制的使用水資源造成嚴(yán)重的資源浪費(fèi).某市政府為了提倡低碳環(huán)保的生活理念鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
          (1)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計(jì)全市有多少居民?并說明理由;
          (2)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為[1,1.5)和[1.5,2)之間選取7戶居民作為議價(jià)水費(fèi)價(jià)格聽證會(huì)的代表,并決定會(huì)后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎(jiǎng),設(shè)X為用水量噸數(shù)在[1,1.5)中的獲獎(jiǎng)的家庭數(shù),Y為用水量噸數(shù)在[1.5,2)中的獲獎(jiǎng)家庭數(shù),記隨機(jī)變量Z=|X﹣Y|,求Z的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校為了對(duì)教師教學(xué)水平和教師管理水平進(jìn)行評(píng)價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對(duì)教師教學(xué)水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,對(duì)教師管理水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,其中對(duì)教師教學(xué)水平和教師管理水平都給出好評(píng)的有120人.

          (1)填寫教師教學(xué)水平和教師管理水平評(píng)價(jià)的列聯(lián)表:

          對(duì)教師管理水平好評(píng)

          對(duì)教師管理水平不滿意

          合計(jì)

          對(duì)教師教學(xué)水平好評(píng)

          對(duì)教師教學(xué)水平不滿意

          合計(jì)

          請問是否可以在犯錯(cuò)誤概率不超過0.001的前提下,認(rèn)為教師教學(xué)水平好評(píng)與教師管理水平好評(píng)有關(guān)?

          (2)若將頻率視為概率,有4人參與了此次評(píng)價(jià),設(shè)對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)為隨機(jī)變量.

          ①求對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)的分布列(概率用組合數(shù)算式表示);

          ②求的數(shù)學(xué)期望和方差.

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          ,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面為菱形,平面底面,且,,,的中點(diǎn).

          1)證明:.

          2)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)的圖象在處的切線過點(diǎn),求的值;

          (2)當(dāng)時(shí),函數(shù)上沒有零點(diǎn),求實(shí)數(shù)的取值范圍;

          (3)當(dāng)時(shí),存在實(shí)數(shù)使得,求證:.

          查看答案和解析>>

          同步練習(xí)冊答案