日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•西城區(qū)二模)如圖是1,2兩組各7名同學(xué)體重(單位:kg)數(shù)據(jù)的莖葉圖.設(shè)1,2兩組數(shù)據(jù)的平均數(shù)依次為
          .
          x1
          .
          x2
          ,標(biāo)準(zhǔn)差依次為s1和s2,那么( 。ㄗⅲ簶(biāo)準(zhǔn)差s=
          1
          n
          [(x1-
          .
          x
          )
          2
          +(x2-
          .
          x
          )
          2
          +…+(xn-
          .
          x
          )
          2
          ]
          ,其中
          .
          x
          為x1,x2,…,xn的平均數(shù))
          分析:將題中的莖葉圖還原,結(jié)合平均數(shù)、方差計算公式,分別算出第1組7位同學(xué)和第2組7位同學(xué)的平均數(shù)和方差,再將所得結(jié)果加以比較,即得本題的答案.
          解答:解:由莖葉圖,得第1組的7名同學(xué)的體重分別為53  56  57  58  61  70  72,
          ∴第1組的7名同學(xué)體重的平均數(shù)為:
          .
          x1
          =
          1
          7
          (53+56+57+58+61+70+72)=61kg
          因此,第1組的7名同學(xué)體重的方差為:s2=
          1
          7
          [(53-61)2+(56-61)2+…+(72-61)2]=43.00kg2
          同理,第2組的7名同學(xué)體重的平均數(shù)為:
          .
          x2
          =
          1
          7
          (54+56+58+60+61+72+73)=62kg
          因此,第1組的7名同學(xué)體重的方差為:s2=
          1
          7
          [(54-62)2+(56-62)2+…+(73-62)2]=63.14kg2,
          .
          x1
          .
          x2
          且s1<s2
          故選:C
          點評:本題給出莖葉圖,要我們求出數(shù)據(jù)的平均數(shù)和方差,著重考查了莖葉圖的認識、樣本特征數(shù)的計算等知識,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西城區(qū)二模)已知函數(shù)f(x)=cos2(x-
          π
          6
          )-sin2x

          (Ⅰ)求f(
          π
          12
          )
          的值;
          (Ⅱ)若對于任意的x∈[0,
          π
          2
          ]
          ,都有f(x)≤c,求實數(shù)c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西城區(qū)二模)如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
          (Ⅰ)求證:AB⊥DE;
          (Ⅱ)求直線EC與平面ABE所成角的正弦值;
          (Ⅲ)線段EA上是否存在點F,使EC∥平面FBD?若存在,求出
          EFEA
          ;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西城區(qū)二模)對數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個結(jié)論:
          ①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
          ②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
          ③若數(shù)列{an}的通項公式為an=n2,則{an}為3階遞歸數(shù)列.
          其中,正確結(jié)論的個數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西城區(qū)二模)甲、乙兩人參加某種選拔測試.在備選的10道題中,甲答對其中每道題的概率都是
          35
          ,乙能答對其中的5道題.規(guī)定每次考試都從備選的10道題中隨機抽出3道題進行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,至少得15分才能入選.
          (Ⅰ)求乙得分的分布列和數(shù)學(xué)期望;
          (Ⅱ)求甲、乙兩人中至少有一人入選的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西城區(qū)二模)執(zhí)行如圖所示的程序框圖,若輸入如下四個函數(shù):
          ①y=2x;
          ②y=-2x
          ③f(x)=x+x-1;
          ④f(x)=x-x-1
          則輸出函數(shù)的序號為( 。

          查看答案和解析>>

          同步練習(xí)冊答案