日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù).
          (Ⅰ)當(dāng)時(shí),討論函數(shù)在[上的單調(diào)性;
          (Ⅱ)如果是函數(shù)的兩個(gè)零點(diǎn),為函數(shù)的導(dǎo)數(shù),證明:.
          (Ⅰ)當(dāng)時(shí),函數(shù)上單調(diào)遞減;(Ⅱ)詳見解析.

          試題分析:(Ⅰ)不是常見的函數(shù)的單調(diào)性問題,可以采用求導(dǎo)得方法.通過定導(dǎo)數(shù)的正負(fù)來確定單調(diào)性.在本題中,求導(dǎo)得,但發(fā)現(xiàn)還是無法直接判斷其正負(fù).這時(shí)注意到上單調(diào)遞減,可以得到其最大值,即,而,所以,從而得函數(shù)上單調(diào)遞減;(Ⅱ)通過是函數(shù)的兩個(gè)零點(diǎn)把表示出來,代入中,由分成兩段分別定其正負(fù).易知為負(fù),則化成,再將視為整體,通過研究的單調(diào)性確定的正負(fù),從而最終得到.本題中通過求導(dǎo)來研究的單調(diào)性,由其最值確定的正負(fù).其中要注意的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225924535.png" style="vertical-align:middle;" />,從而這個(gè)隱含范圍.
          試題解析:(Ⅰ),     1分
          易知上單調(diào)遞減,        2分
          ∴當(dāng)時(shí),.      3分
          當(dāng)時(shí),上恒成立.
          ∴當(dāng)時(shí),函數(shù)上單調(diào)遞減.    5分
          (Ⅱ),是函數(shù)的兩個(gè)零點(diǎn),
            (1)
            (2)    6分
          由(2)-(1)得:
              8分
          ,所以
          ,
          代入化簡得:    9分
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022226423737.png" style="vertical-align:middle;" />,故只要研究的符號
              10分
          ,則,且
          ,                       12分
          所以,
          當(dāng)時(shí),恒成立,所以上單調(diào)遞增,所以當(dāng)時(shí),
          ,所以,又,故,所以,即,又
          ,所以.    14分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù).
          ⑴求函數(shù)的單調(diào)區(qū)間;
          ⑵求函數(shù)的值域;
          ⑶已知恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          ,其中.
          (1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值;
          (2)當(dāng)時(shí),若恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù),其中為常數(shù)。
          (Ⅰ)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
          (Ⅱ)若函數(shù)有極值點(diǎn),求的取值范圍及的極值點(diǎn)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (1)若處的切線方程;
          (2)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知函數(shù),當(dāng)時(shí),不等式
          恒成立,則實(shí)數(shù)的取值范圍為(  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知函數(shù)f(x)=x3+2bx2+cx+1有兩個(gè)極值點(diǎn)x1、x2,且x1∈[-2,-1],x2∈[1,2],則f(-1)的取值范圍是         (  )
          A.[-,3]B.[,6]C.[3,12]D.[-,12]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          函數(shù)
          (1)當(dāng)時(shí),對任意R,存在R,使,求實(shí)數(shù)的取值范圍;
          (2)若對任意恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          函數(shù)的導(dǎo)函數(shù)是,則   .

          查看答案和解析>>

          同步練習(xí)冊答案