日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16、已知f(x)為奇函數(shù),當(dāng)x≥0時,f(x)=x2-2x,則當(dāng)x<0時,f(x)的解析式為
          f(x)=-x2-2x(x<0)
          分析:已知x≥0時的解析式,所以求x<0時的解析式可取-x,以便利用條件;
          然后結(jié)合奇函數(shù)定義即可解決問題.
          解答:解:設(shè)x<0,則-x>0,
          因為x≥0時,f(x)=x2-2x,
          所以f(-x)=x2+2x,(x<0),
          又f(x)為奇函數(shù),即f(-x)=-f(x),
          所以-f(x)=x2+2x,即f(x)=-x2-2x,(x<0).
          點評:本題考查奇函數(shù)定義和基本的代數(shù)運算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)為奇函數(shù),當(dāng)x∈(-∞,0)時,f(x)=x+2,則f(x)>0的解集為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)為奇函數(shù)且在(0,+∞)為減函數(shù),f(2)=0,則使不等式f(2x+1)<0成立的x取值范圍為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)為奇函數(shù),且當(dāng)x>0時,f′(x)>0,f(3)=0,則不等式xf(x)<0的解集為
          {x|0<x<3或-3<x<0}
          {x|0<x<3或-3<x<0}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1-x)
          (1)求f(x)及g(x)的解析式,并指出其單調(diào)性(無需證明).
          (2)求使f(x)<0的x取值范圍.
          (3)設(shè)h-1(x)是h(x)=log2x的反函數(shù),若存在唯一的x使
          1-h-1(x)1+h-1(x)
          =m-2x
          成立,求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案