日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)為奇函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=x+2,則f(x)>0的解集為( 。
          分析:先確定x>0時(shí),函數(shù)的解析式,再將不等式等價(jià)變形,即可求得結(jié)論.
          解答:解:設(shè)x>0,則-x<0,
          ∵當(dāng)x∈(-∞,0)時(shí),f(x)=x+2,
          ∴f(-x)=-x+2
          ∵f(x)為奇函數(shù),
          ∴f(x)=-f(-x)=x-2(x>0)
          ∴f(x)>0等價(jià)于
          x>0
          x-2>0
          x<0
          x+2>0

          ∴x>2或-2<x<0
          故選C.
          點(diǎn)評(píng):本題考查函數(shù)的奇偶性,考查解不等式,考查學(xué)生的計(jì)算能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          16、已知f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x,則當(dāng)x<0時(shí),f(x)的解析式為
          f(x)=-x2-2x(x<0)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)為奇函數(shù)且在(0,+∞)為減函數(shù),f(2)=0,則使不等式f(2x+1)<0成立的x取值范圍為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)為奇函數(shù),且當(dāng)x>0時(shí),f′(x)>0,f(3)=0,則不等式xf(x)<0的解集為
          {x|0<x<3或-3<x<0}
          {x|0<x<3或-3<x<0}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1-x)
          (1)求f(x)及g(x)的解析式,并指出其單調(diào)性(無(wú)需證明).
          (2)求使f(x)<0的x取值范圍.
          (3)設(shè)h-1(x)是h(x)=log2x的反函數(shù),若存在唯一的x使
          1-h-1(x)1+h-1(x)
          =m-2x
          成立,求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案