日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知向量 =({cosx,﹣ cosx), =(cosx,sinx),函數(shù)f(x)= +1. (Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (Ⅱ)若f(θ)= , 的值.

          【答案】解:(Ⅰ)由題意函數(shù)f(x)= +1. 可得:f(x)=cos2x﹣ sinxcosx+1= cos2x﹣ sin2x+
          =cos(2x+ )+ ,
          ,可得 ≤x≤ ,k∈Z.
          ∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[ , ],k∈Z.
          (Ⅱ)由f(θ)= ,即cos(2θ+ )+ = ,
          可得:cos(2θ+ )= ,
          ∵θ∈[ ],
          ∴2θ+ ∈[π, ],
          ∴sin(2θ+ )= ,
          那么:sin2θ=sin[(2θ )﹣ ]=sin(2θ+ )cos ﹣cos(2θ+ )sin =
          【解析】(Ⅰ)根據(jù)函數(shù)f(x)= +1.求解f(x)的解析式,化解為y=Acos(ωx+φ)的形式,將內(nèi)層函數(shù)看作整體,放到余弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;(Ⅱ)根據(jù)f(θ)= 建立關(guān)系,利用構(gòu)造思想,根據(jù)和與差的公式計(jì)算.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】北京、張家港2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競標(biāo)配套活動(dòng)的相關(guān)代言,決定對旗下的某商品進(jìn)行一次評估.該商品原來每件售價(jià)為25元,年銷售8萬件.
          (1)據(jù)市場調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
          (2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到x元.公司擬投入 萬作為技改費(fèi)用,投入(50+2x)萬元作為宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】四棱錐P﹣ABCD中,PD⊥平面ABCD,BC⊥CD,PD=1,AB= ,BC=CD= ,AD=1.
          (1)求異面直線AB、PC所成角的余弦值;
          (2)點(diǎn)E是線段AB的中點(diǎn),求二面角E﹣PC﹣D的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,為測一樹的高度,在地面上選取A、B兩點(diǎn),從A、B兩點(diǎn)分別測得樹尖的仰角為30°、45°,且A、B兩點(diǎn)之間的距離為60m,則樹的高度為(
          A.(30+30 ) m
          B.(30+15 ) m??
          C.(15+30 ) m
          D.(15+15 ) m

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某休閑廣場中央有一個(gè)半徑為1(百米)的圓形花壇,現(xiàn)計(jì)劃在該花壇內(nèi)建造一條六邊形觀光步道,圍出一個(gè)由兩個(gè)全等的等腰梯形(梯形ABCF和梯形DEFC)構(gòu)成的六邊形ABCDEF區(qū)域,其中A、B、C、D、E、F都在圓周上,CF為圓的直徑(如圖).設(shè)∠AOF=θ,其中O為圓心.
          (1)把六邊形ABCDEF的面積表示成關(guān)于θ的函數(shù)f(θ);
          (2)當(dāng)θ為何值時(shí),可使得六邊形區(qū)域面積達(dá)到最大?并求最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,已知B=45°,D是BC上一點(diǎn),AD=5,AC=7,DC=3,求AB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知等比數(shù)列{an}中,a2=1,則其前三項(xiàng)和S3的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角△ABC中,∠BCA=90°,CA=CB=1,P為AB邊上的點(diǎn)且 ,若 ,則λ的取值范圍是(
          A.[ ,1]
          B.[ ,1]
          C.[ , ]
          D.[ ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方體ABCD﹣A1B1C1D1中,M、N分別為棱C1D1、C1C的中點(diǎn),有以下四個(gè)結(jié)論: ①直線AM與CC1是相交直線;
          ②直線AM與BN是平行直線;
          ③直線BN與MB1是異面直線;
          ④直線AM與DD1是異面直線.
          其中正確的結(jié)論為(注:把你認(rèn)為正確的結(jié)論的序號(hào)都填上).

          查看答案和解析>>

          同步練習(xí)冊答案